Some remarks on Leopoldt's conjecture
Algebra i analiz, Tome 10 (1998) no. 6, pp. 144-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be a number field, and let $p$ be a fixed prime number. Then the vanishing of the Leopoldt kernel $\mathscr{L}_p(k)$ is shown to be equivalent to the validity of a "Strong Local-Global Principle on units of $k$". This adds a problem of effectivity to Leopoldt's conjecture (an example to which is provided by the classical Kummer lemma on the $p$th powers of units in the field of the $p$th roots of unity). Some further remarks pertain to $\mathscr{L}_p(k)$ as a Galois module. For example, if $k/{\mathbb Q}$ is an Abelian $p$-extension, then the triviality of $\mathscr{L}_p(k)$ can be shown quite easily (in particular, without using Brumer's transcendency theorem).
@article{AA_1998_10_6_a3,
     author = {F. Lorenz},
     title = {Some remarks on {Leopoldt's} conjecture},
     journal = {Algebra i analiz},
     pages = {144--155},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1998_10_6_a3/}
}
TY  - JOUR
AU  - F. Lorenz
TI  - Some remarks on Leopoldt's conjecture
JO  - Algebra i analiz
PY  - 1998
SP  - 144
EP  - 155
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1998_10_6_a3/
LA  - en
ID  - AA_1998_10_6_a3
ER  - 
%0 Journal Article
%A F. Lorenz
%T Some remarks on Leopoldt's conjecture
%J Algebra i analiz
%D 1998
%P 144-155
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1998_10_6_a3/
%G en
%F AA_1998_10_6_a3
F. Lorenz. Some remarks on Leopoldt's conjecture. Algebra i analiz, Tome 10 (1998) no. 6, pp. 144-155. http://geodesic.mathdoc.fr/item/AA_1998_10_6_a3/