Some remarks on Leopoldt's conjecture
Algebra i analiz, Tome 10 (1998) no. 6, pp. 144-155
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $k$ be a number field, and let $p$ be a fixed prime number. Then the vanishing of the Leopoldt kernel $\mathscr{L}_p(k)$ is shown to be equivalent to the validity of a "Strong Local-Global Principle on units of $k$". This adds a problem of effectivity to Leopoldt's conjecture (an example to which is provided by the classical Kummer lemma on the $p$th powers of units in the field of the $p$th roots of unity). Some further remarks pertain to $\mathscr{L}_p(k)$ as a Galois module. For example, if $k/{\mathbb Q}$ is an Abelian $p$-extension, then the triviality of $\mathscr{L}_p(k)$ can be shown quite easily (in particular, without using Brumer's transcendency theorem).
@article{AA_1998_10_6_a3,
author = {F. Lorenz},
title = {Some remarks on {Leopoldt's} conjecture},
journal = {Algebra i analiz},
pages = {144--155},
year = {1998},
volume = {10},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_1998_10_6_a3/}
}
F. Lorenz. Some remarks on Leopoldt's conjecture. Algebra i analiz, Tome 10 (1998) no. 6, pp. 144-155. http://geodesic.mathdoc.fr/item/AA_1998_10_6_a3/