The similarity degree of an operator algebra
Algebra i analiz, Tome 10 (1998) no. 1, pp. 132-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a unital operator algebra having the property that every bounded unital homomorphism $u\colon A\to B(H)$ is similar to a contractive one. Let $\operatorname{Sim}(u)=\inf\{\|S\|\,\|S^{-1}\|\}$, where the infimum runs over all invertible operators $S\colon H\to H$ such that the “conjugate” homomorphism $a\mapsto S^{-1}u(a)S$ is contractive. Now for all $c>1$, let $\Phi(c)=\sup\operatorname{Sim}(u)$, where the supremum runs over all unital homomorphism $u\colon A\to B(H)$ with $\|u\|\le c$. Then there is $\alpha\ge 0$ such that for some constant $K$ we have: $$ \Phi(c)\le Kc^{\alpha},\qquad c>1. $$ Moreover, the infimum of such $\alpha$'s is an integer (denoted by $d(A)$ and called the similarity degree of $A$), and (*) is still true for some $K$ when $\alpha=d(A)$. Among the applications of these results, new characterizations are given of proper uniform algebras on one hand, and of nuclear $C^*$-algebras on the other. Moreover, a characterization of amenable groups is obtained, which answers (at least partially) a question on group representations going back to a 1950 paper of Dixmier.
Keywords: Similarity problem, similarity degree, completely bounded map, operator space, operator algebra, group representation, uniform algebra.
@article{AA_1998_10_1_a6,
     author = {G. Pisier},
     title = {The similarity degree of an operator algebra},
     journal = {Algebra i analiz},
     pages = {132--186},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1998_10_1_a6/}
}
TY  - JOUR
AU  - G. Pisier
TI  - The similarity degree of an operator algebra
JO  - Algebra i analiz
PY  - 1998
SP  - 132
EP  - 186
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1998_10_1_a6/
LA  - en
ID  - AA_1998_10_1_a6
ER  - 
%0 Journal Article
%A G. Pisier
%T The similarity degree of an operator algebra
%J Algebra i analiz
%D 1998
%P 132-186
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1998_10_1_a6/
%G en
%F AA_1998_10_1_a6
G. Pisier. The similarity degree of an operator algebra. Algebra i analiz, Tome 10 (1998) no. 1, pp. 132-186. http://geodesic.mathdoc.fr/item/AA_1998_10_1_a6/