Rim hook lattices
Algebra i analiz, Tome 9 (1997) no. 5, pp. 140-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the partial order on partitions of integers defined by removal of rim hooks of a given length. Isomorphism between this poset and a product of Young's lattices leads to rim hook versions of Schensted correspondences. Similar results are given for shifted shapes.
Keywords: Young lattice, rim hooks, differential posets.
@article{AA_1997_9_5_a5,
     author = {S. Fomin and D. Stanton},
     title = {Rim hook lattices},
     journal = {Algebra i analiz},
     pages = {140--150},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1997_9_5_a5/}
}
TY  - JOUR
AU  - S. Fomin
AU  - D. Stanton
TI  - Rim hook lattices
JO  - Algebra i analiz
PY  - 1997
SP  - 140
EP  - 150
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1997_9_5_a5/
LA  - en
ID  - AA_1997_9_5_a5
ER  - 
%0 Journal Article
%A S. Fomin
%A D. Stanton
%T Rim hook lattices
%J Algebra i analiz
%D 1997
%P 140-150
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1997_9_5_a5/
%G en
%F AA_1997_9_5_a5
S. Fomin; D. Stanton. Rim hook lattices. Algebra i analiz, Tome 9 (1997) no. 5, pp. 140-150. http://geodesic.mathdoc.fr/item/AA_1997_9_5_a5/