Rim hook lattices
Algebra i analiz, Tome 9 (1997) no. 5, pp. 140-150
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the partial order on partitions of integers defined by removal of rim hooks of a given length. Isomorphism between this poset and a product of Young's lattices leads to rim hook versions of Schensted correspondences. Similar results are given for shifted shapes.
Keywords:
Young lattice, rim hooks, differential posets.
@article{AA_1997_9_5_a5,
author = {S. Fomin and D. Stanton},
title = {Rim hook lattices},
journal = {Algebra i analiz},
pages = {140--150},
year = {1997},
volume = {9},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_1997_9_5_a5/}
}
S. Fomin; D. Stanton. Rim hook lattices. Algebra i analiz, Tome 9 (1997) no. 5, pp. 140-150. http://geodesic.mathdoc.fr/item/AA_1997_9_5_a5/