The monodromy group of a configuration of lines
Algebra i analiz, Tome 8 (1996) no. 6, pp. 1-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

A configuration of skew lines is an unordered collection of lines in general position in a real affine or projective three-dimensional space. Such configurations give rise to topological problems related to real algebraic geometry. In this paper, the notion of a monodromy group, which is a rigid isotopy invariant of such configurations, is introduced, and some of its properties are studied. It is shown that in two important cases, the monodromy group determines the configuration up to rigid isotopy and mirror image.
Keywords: Three-dimensional space, configuration of lines, monodromy group.
@article{AA_1996_8_6_a0,
     author = {Florian Deloup},
     title = {The monodromy group of a configuration of lines},
     journal = {Algebra i analiz},
     pages = {1--25},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1996_8_6_a0/}
}
TY  - JOUR
AU  - Florian Deloup
TI  - The monodromy group of a configuration of lines
JO  - Algebra i analiz
PY  - 1996
SP  - 1
EP  - 25
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1996_8_6_a0/
LA  - en
ID  - AA_1996_8_6_a0
ER  - 
%0 Journal Article
%A Florian Deloup
%T The monodromy group of a configuration of lines
%J Algebra i analiz
%D 1996
%P 1-25
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1996_8_6_a0/
%G en
%F AA_1996_8_6_a0
Florian Deloup. The monodromy group of a configuration of lines. Algebra i analiz, Tome 8 (1996) no. 6, pp. 1-25. http://geodesic.mathdoc.fr/item/AA_1996_8_6_a0/