The Heisenberg double and the pentagon relation
Algebra i analiz, Tome 8 (1996) no. 4, pp. 63-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Heisenberg double of an arbitrary Hopf algebra has a canonical element satisfying the pentagon relation. The structure of the underlying algebras can be recovered by a given invertible constant solution of the pentagon relation. The Drinfeld double is representable as a subalgebra in the tensor square of the Heisenberg double. This offers a possibility of expressing solutions of the Yang–Baxter relation in terms of solutions of the pentagon relation.
Keywords: Heisenberg double, Drinfeld double, Yang–Baxter equation, pentagon relation.
@article{AA_1996_8_4_a2,
     author = {R. M. Kashaev},
     title = {The {Heisenberg} double and the pentagon relation},
     journal = {Algebra i analiz},
     pages = {63--74},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1996_8_4_a2/}
}
TY  - JOUR
AU  - R. M. Kashaev
TI  - The Heisenberg double and the pentagon relation
JO  - Algebra i analiz
PY  - 1996
SP  - 63
EP  - 74
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1996_8_4_a2/
LA  - en
ID  - AA_1996_8_4_a2
ER  - 
%0 Journal Article
%A R. M. Kashaev
%T The Heisenberg double and the pentagon relation
%J Algebra i analiz
%D 1996
%P 63-74
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1996_8_4_a2/
%G en
%F AA_1996_8_4_a2
R. M. Kashaev. The Heisenberg double and the pentagon relation. Algebra i analiz, Tome 8 (1996) no. 4, pp. 63-74. http://geodesic.mathdoc.fr/item/AA_1996_8_4_a2/