$C^1$ regularity of the boundary of a noncoincident set in a problem with an obstacle
Algebra i analiz, Tome 8 (1996) no. 2, pp. 205-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_1996_8_2_a11,
     author = {N. N. Ural'tseva},
     title = {$C^1$ regularity of the boundary of a noncoincident set in a problem with an obstacle},
     journal = {Algebra i analiz},
     pages = {205--221},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_1996_8_2_a11/}
}
TY  - JOUR
AU  - N. N. Ural'tseva
TI  - $C^1$ regularity of the boundary of a noncoincident set in a problem with an obstacle
JO  - Algebra i analiz
PY  - 1996
SP  - 205
EP  - 221
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1996_8_2_a11/
LA  - ru
ID  - AA_1996_8_2_a11
ER  - 
%0 Journal Article
%A N. N. Ural'tseva
%T $C^1$ regularity of the boundary of a noncoincident set in a problem with an obstacle
%J Algebra i analiz
%D 1996
%P 205-221
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1996_8_2_a11/
%G ru
%F AA_1996_8_2_a11
N. N. Ural'tseva. $C^1$ regularity of the boundary of a noncoincident set in a problem with an obstacle. Algebra i analiz, Tome 8 (1996) no. 2, pp. 205-221. http://geodesic.mathdoc.fr/item/AA_1996_8_2_a11/