Inverse boundary value problems.
Algebra i analiz, Tome 8 (1996) no. 2, pp. 195-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present an overview of some recent progress in inverse problems. We shall discuss several time independent problems. In general we consider a bounded region in ${\mathbb R}^n$, which represents a body, and a partial differential equation, or system of equations, which represents the physics inside the body. The problem is to deduce the interior physical parameters – coefficients of the differential equation – from measurements made at the boundary of the region. We begin with the simplest example.
@article{AA_1996_8_2_a10,
     author = {J. Sylvester},
     title = {Inverse boundary value problems.},
     journal = {Algebra i analiz},
     pages = {195--204},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1996_8_2_a10/}
}
TY  - JOUR
AU  - J. Sylvester
TI  - Inverse boundary value problems.
JO  - Algebra i analiz
PY  - 1996
SP  - 195
EP  - 204
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1996_8_2_a10/
LA  - en
ID  - AA_1996_8_2_a10
ER  - 
%0 Journal Article
%A J. Sylvester
%T Inverse boundary value problems.
%J Algebra i analiz
%D 1996
%P 195-204
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1996_8_2_a10/
%G en
%F AA_1996_8_2_a10
J. Sylvester. Inverse boundary value problems.. Algebra i analiz, Tome 8 (1996) no. 2, pp. 195-204. http://geodesic.mathdoc.fr/item/AA_1996_8_2_a10/