Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator
Algebra i analiz, Tome 7 (1995) no. 6, pp. 205-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a new approach to weighted norm inequalities. This approach is based on weighted embedding theorems of Carleson type. When $p=2$ the boundedness of an embedding operator follows from a technical trick (the Vinogradov–Senichkin test) which amounts to “doubling” the kernel of this operator. We show how this approach enables us to prove the Hunt–Muckenhoupt–Wheeden and Sawyer theorems. We also formulate a necessary and sufficient condition for vector weighted boundedness of the Hubert transform (the matrix $A_2$-condition), which we have obtained using this approach.
@article{AA_1995_7_6_a6,
     author = {S. R. Treil and A. L. Volberg},
     title = {Weighted embeddings and weighted norm inequalities for the {Hilbert} transform and the maximal operator},
     journal = {Algebra i analiz},
     pages = {205--226},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1995_7_6_a6/}
}
TY  - JOUR
AU  - S. R. Treil
AU  - A. L. Volberg
TI  - Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator
JO  - Algebra i analiz
PY  - 1995
SP  - 205
EP  - 226
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1995_7_6_a6/
LA  - en
ID  - AA_1995_7_6_a6
ER  - 
%0 Journal Article
%A S. R. Treil
%A A. L. Volberg
%T Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator
%J Algebra i analiz
%D 1995
%P 205-226
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1995_7_6_a6/
%G en
%F AA_1995_7_6_a6
S. R. Treil; A. L. Volberg. Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator. Algebra i analiz, Tome 7 (1995) no. 6, pp. 205-226. http://geodesic.mathdoc.fr/item/AA_1995_7_6_a6/