Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator
Algebra i analiz, Tome 7 (1995) no. 6, pp. 205-226
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider a new approach to weighted norm inequalities. This approach is based on weighted embedding theorems of Carleson type. When $p=2$ the boundedness of an embedding operator follows from a technical trick (the Vinogradov–Senichkin test) which amounts to “doubling” the kernel of this operator. We show how this approach enables us to prove the Hunt–Muckenhoupt–Wheeden and Sawyer theorems. We also formulate a necessary and sufficient condition for vector weighted boundedness of the Hubert transform (the matrix $A_2$-condition), which we have obtained using this approach.
@article{AA_1995_7_6_a6,
author = {S. R. Treil and A. L. Volberg},
title = {Weighted embeddings and weighted norm inequalities for the {Hilbert} transform and the maximal operator},
journal = {Algebra i analiz},
pages = {205--226},
year = {1995},
volume = {7},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_1995_7_6_a6/}
}
TY - JOUR AU - S. R. Treil AU - A. L. Volberg TI - Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator JO - Algebra i analiz PY - 1995 SP - 205 EP - 226 VL - 7 IS - 6 UR - http://geodesic.mathdoc.fr/item/AA_1995_7_6_a6/ LA - en ID - AA_1995_7_6_a6 ER -
S. R. Treil; A. L. Volberg. Weighted embeddings and weighted norm inequalities for the Hilbert transform and the maximal operator. Algebra i analiz, Tome 7 (1995) no. 6, pp. 205-226. http://geodesic.mathdoc.fr/item/AA_1995_7_6_a6/