$O(n)\times O(m-n)$-structures on $m$-dimensional manifolds, and submersions of Riemannian manifolds
Algebra i analiz, Tome 7 (1995) no. 6, pp. 188-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_1995_7_6_a5,
     author = {S. E. Stepanov},
     title = {$O(n)\times O(m-n)$-structures on $m$-dimensional manifolds, and submersions of {Riemannian} manifolds},
     journal = {Algebra i analiz},
     pages = {188--204},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_1995_7_6_a5/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - $O(n)\times O(m-n)$-structures on $m$-dimensional manifolds, and submersions of Riemannian manifolds
JO  - Algebra i analiz
PY  - 1995
SP  - 188
EP  - 204
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1995_7_6_a5/
LA  - ru
ID  - AA_1995_7_6_a5
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T $O(n)\times O(m-n)$-structures on $m$-dimensional manifolds, and submersions of Riemannian manifolds
%J Algebra i analiz
%D 1995
%P 188-204
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1995_7_6_a5/
%G ru
%F AA_1995_7_6_a5
S. E. Stepanov. $O(n)\times O(m-n)$-structures on $m$-dimensional manifolds, and submersions of Riemannian manifolds. Algebra i analiz, Tome 7 (1995) no. 6, pp. 188-204. http://geodesic.mathdoc.fr/item/AA_1995_7_6_a5/