Beredn transform and the Laplace–Beltrami operator
Algebra i analiz, Tome 7 (1995) no. 4, pp. 176-195
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\Omega$ be a domain in $\mathbf C,K(x,\bar y)$ its Bergman kernel, $\Delta$ the Laplace–Beltrami operator on $\Omega$, and $\mathcal B$ the Berezin transform on $\Omega$, i.e., the integral operator with the kernel $|K(x,\bar y)|^2/K(y,\bar y)$. For domains that are complete in the Riemannian metric $K(x,\bar x)^{1/2}|dx|$, it is shown that $\mathcal B$ is a function of $\Delta$ if and only if $\mathcal B$ commutes with $\Delta$ if and only if the above metric has constant curvature if and only if $\Omega$ is simply connected. This supplements the results of Berezin [5] and of Unterberger and Upmeier [19] for the unit disc. We also briefly treat the case of weighted Bergman spaces, and indicate a relationship with quantization on $\Omega$.
Keywords:
Laplace–Beltrami operator, Bergman kernel, curvature quantization.
Mots-clés : Berezin transform
Mots-clés : Berezin transform
@article{AA_1995_7_4_a5,
author = {M. Engli\v{s}},
title = {Beredn transform and the {Laplace{\textendash}Beltrami} operator},
journal = {Algebra i analiz},
pages = {176--195},
year = {1995},
volume = {7},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_1995_7_4_a5/}
}
M. Engliš. Beredn transform and the Laplace–Beltrami operator. Algebra i analiz, Tome 7 (1995) no. 4, pp. 176-195. http://geodesic.mathdoc.fr/item/AA_1995_7_4_a5/