Beredn transform and the Laplace--Beltrami operator
Algebra i analiz, Tome 7 (1995) no. 4, pp. 176-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be a domain in $\mathbf C,K(x,\bar y)$ its Bergman kernel, $\Delta$ the Laplace–Beltrami operator on $\Omega$, and $\mathcal B$ the Berezin transform on $\Omega$, i.e., the integral operator with the kernel $|K(x,\bar y)|^2/K(y,\bar y)$. For domains that are complete in the Riemannian metric $K(x,\bar x)^{1/2}|dx|$, it is shown that $\mathcal B$ is a function of $\Delta$ if and only if $\mathcal B$ commutes with $\Delta$ if and only if the above metric has constant curvature if and only if $\Omega$ is simply connected. This supplements the results of Berezin [5] and of Unterberger and Upmeier [19] for the unit disc. We also briefly treat the case of weighted Bergman spaces, and indicate a relationship with quantization on $\Omega$.
Keywords: Berezin transform, Laplace–Beltrami operator, Bergman kernel, curvature quantization.
@article{AA_1995_7_4_a5,
     author = {M. Engli\v{s}},
     title = {Beredn transform and the {Laplace--Beltrami} operator},
     journal = {Algebra i analiz},
     pages = {176--195},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1995_7_4_a5/}
}
TY  - JOUR
AU  - M. Engliš
TI  - Beredn transform and the Laplace--Beltrami operator
JO  - Algebra i analiz
PY  - 1995
SP  - 176
EP  - 195
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1995_7_4_a5/
LA  - en
ID  - AA_1995_7_4_a5
ER  - 
%0 Journal Article
%A M. Engliš
%T Beredn transform and the Laplace--Beltrami operator
%J Algebra i analiz
%D 1995
%P 176-195
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1995_7_4_a5/
%G en
%F AA_1995_7_4_a5
M. Engliš. Beredn transform and the Laplace--Beltrami operator. Algebra i analiz, Tome 7 (1995) no. 4, pp. 176-195. http://geodesic.mathdoc.fr/item/AA_1995_7_4_a5/