Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity
Algebra i analiz, Tome 6 (1994) no. 6, pp. 128-153
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the model problem of minimizing the functional $\int_{\Omega}\frac{1}{2}|\nabla u|^2+h(\operatorname{det}\nabla u)dx$ where $u:\mathbb R^2\supset\Omega\to\mathbb R^2$ and $h:\mathbb R\to[0,\infty]$ denotes a function which is convex and smooth on $(0,\infty)$, $\operatorname{lim}_{t\downarrow 0}h(t)=+\infty$ and $h\equiv+\infty$ on $(-\infty,0]$. In particular, we show that it is possible to introduce an approximation $\int_{\Omega}\frac{1}{2}|\nabla u|^2+h_{\delta}(\operatorname{det}\nabla u)dx$ for the energy whose minimizers $u_{\delta}$ are of class $C^1$ on some open subset $\Omega_{\delta}$ of $\Omega$ and converge strongly in $H^{1,2}(\Omega,\mathbb R^2)$ to a minimizer и of the original problem. Moreover, we have control on the measure of the exceptional set in the sense that $|\Omega-\Omega_{\delta}|\to 0$ as $\delta\to 0$.
Keywords:
Nonlinear elasticity, partial regularity, approximation.
@article{AA_1994_6_6_a6,
author = {M. Fuchs and G. A. Seregin},
title = {Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity},
journal = {Algebra i analiz},
pages = {128--153},
year = {1994},
volume = {6},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_1994_6_6_a6/}
}
TY - JOUR AU - M. Fuchs AU - G. A. Seregin TI - Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity JO - Algebra i analiz PY - 1994 SP - 128 EP - 153 VL - 6 IS - 6 UR - http://geodesic.mathdoc.fr/item/AA_1994_6_6_a6/ LA - en ID - AA_1994_6_6_a6 ER -
M. Fuchs; G. A. Seregin. Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity. Algebra i analiz, Tome 6 (1994) no. 6, pp. 128-153. http://geodesic.mathdoc.fr/item/AA_1994_6_6_a6/