Gauss hypergeometric function and quadratic $R$-matrix algebras
Algebra i analiz, Tome 6 (1994) no. 3, pp. 161-184
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider representations of quadratic $R$-matrix algebras by means of certain first order ordinary differential operators. These operators turn out to act as parameter shifting operators on the Gauss hypergeometric function and its limit cases and on classical orthogonal polynomials. The relationship with W. Miller's treatment of Lie algebras of first order differential operators will be discussed.
Keywords:
Quadratic $R$-matrix algebras, Gauss hypergeometric function, classical orthogonal polynomials, recurrence relations.
@article{AA_1994_6_3_a9,
author = {T. H. Koornwinder and V. B. Kuznetsov},
title = {Gauss hypergeometric function and quadratic $R$-matrix algebras},
journal = {Algebra i analiz},
pages = {161--184},
year = {1994},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_1994_6_3_a9/}
}
T. H. Koornwinder; V. B. Kuznetsov. Gauss hypergeometric function and quadratic $R$-matrix algebras. Algebra i analiz, Tome 6 (1994) no. 3, pp. 161-184. http://geodesic.mathdoc.fr/item/AA_1994_6_3_a9/