Constructions of uniform distributions in terms of geometry of numbers
Algebra i analiz, Tome 6 (1994) no. 3, pp. 200-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the author proves that the points of admissible lattices in the Euclidean space are distributed very uniformly in parallelepipeds. In particular, the remainder terms in the corresponding lattice point problem are found to be logarithmically small. As an application of these results point sets with the lowest possible discrepancies in the unit cube and quadrature formulas with the smallest possible errors in the classes of functions with anisotropic smoothness are given in terms of admissible lattices.
Keywords: Lattice point problem, uniform distributions, quadrature formulas.
@article{AA_1994_6_3_a11,
     author = {M. M. Skriganov},
     title = {Constructions of uniform distributions in terms of geometry of numbers},
     journal = {Algebra i analiz},
     pages = {200--230},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1994_6_3_a11/}
}
TY  - JOUR
AU  - M. M. Skriganov
TI  - Constructions of uniform distributions in terms of geometry of numbers
JO  - Algebra i analiz
PY  - 1994
SP  - 200
EP  - 230
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1994_6_3_a11/
LA  - en
ID  - AA_1994_6_3_a11
ER  - 
%0 Journal Article
%A M. M. Skriganov
%T Constructions of uniform distributions in terms of geometry of numbers
%J Algebra i analiz
%D 1994
%P 200-230
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1994_6_3_a11/
%G en
%F AA_1994_6_3_a11
M. M. Skriganov. Constructions of uniform distributions in terms of geometry of numbers. Algebra i analiz, Tome 6 (1994) no. 3, pp. 200-230. http://geodesic.mathdoc.fr/item/AA_1994_6_3_a11/