Construction of the classical $R$-matrices for the Toda and Calogero models
Algebra i analiz, Tome 6 (1994) no. 2, pp. 67-89
Cet article a éte moissonné depuis la source Math-Net.Ru
We use the definition of the Calogero–Moser models as Hamiltonian reductions of geodesic motions on a group manifold to construct their $R$-matrices. In the Toda case, the analogous construction yields constant $R$-matrices. By contrast, for Calogero–Moser models they are dynamical objects.
@article{AA_1994_6_2_a2,
author = {J. Avan and O. Babelon and M. Talon},
title = {Construction of the classical $R$-matrices for the {Toda} and {Calogero} models},
journal = {Algebra i analiz},
pages = {67--89},
year = {1994},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_1994_6_2_a2/}
}
J. Avan; O. Babelon; M. Talon. Construction of the classical $R$-matrices for the Toda and Calogero models. Algebra i analiz, Tome 6 (1994) no. 2, pp. 67-89. http://geodesic.mathdoc.fr/item/AA_1994_6_2_a2/