Classification of finite-dimensional algebras generated by the calkin image of a~composition operator on~$L^p$ with weight
Algebra i analiz, Tome 5 (1993) no. 6, pp. 69-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a countable infinite set $X$ and a weight $\mu\colon X\to(0,\infty)$, we denote by $l_{\mu}^p(X)$ the Banach space of all functions $f\colon X\to\mathbb C$ such that $\sum_{x\in X}|f(x)|^p\mu(x)\infty$. The composition operator $C_a$ on $l_{\mu}^p(X)$ induced by a self-map $a\colon X\to X$ is defined by $(C_af)(x)=f(a(x))$. We establish a criterion for $C_a$ to be essentially algebraic, i.e., for the existence of a polynomial $q(z)$ such that $q(C_a)$ is compact. The polynomial $q(z)$ of minimal degree with this property is referred to as the essentially characteristic polynomial of $C_a$. We provide a list of all polynomials that may be the essentially characteristic polynomial of some composition operator on $l_{\mu}^p(X)$, which results in a complete classification of the finite-dimensional algebras generated by the Calkin image of a single composition operator on $l_{\mu}^p(X)$.
Keywords: composition operators, finite-dimensional algebras, algebraic operators, Calkin algebra.
@article{AA_1993_5_6_a2,
     author = {A. B\"ottcher and H. Heidler},
     title = {Classification of finite-dimensional algebras generated by the calkin image of a~composition operator on~$L^p$ with weight},
     journal = {Algebra i analiz},
     pages = {69--96},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1993_5_6_a2/}
}
TY  - JOUR
AU  - A. Böttcher
AU  - H. Heidler
TI  - Classification of finite-dimensional algebras generated by the calkin image of a~composition operator on~$L^p$ with weight
JO  - Algebra i analiz
PY  - 1993
SP  - 69
EP  - 96
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1993_5_6_a2/
LA  - en
ID  - AA_1993_5_6_a2
ER  - 
%0 Journal Article
%A A. Böttcher
%A H. Heidler
%T Classification of finite-dimensional algebras generated by the calkin image of a~composition operator on~$L^p$ with weight
%J Algebra i analiz
%D 1993
%P 69-96
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1993_5_6_a2/
%G en
%F AA_1993_5_6_a2
A. Böttcher; H. Heidler. Classification of finite-dimensional algebras generated by the calkin image of a~composition operator on~$L^p$ with weight. Algebra i analiz, Tome 5 (1993) no. 6, pp. 69-96. http://geodesic.mathdoc.fr/item/AA_1993_5_6_a2/