Lie algebras generated by dynamical systems
Algebra i analiz, Tome 4 (1992) no. 6, pp. 103-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we define the class of infinite dimensional $\mathbb Z$-graded Lie algebras generated by dynamical systems and show that these algebras are the special case of .Lie algebras with continuum root system. We establish a precise isomorphism between “sinealgebras” and “rotation-Lie-algebras”, and give the other examples. We briefly mention the algebras of the type $(B)(D)$ and $(C)$ for the dynamical system.
Keywords: Lie algebra, root system, dynamic system, rotation algebra, continuous Dyrikin diagram, $B-C-D$-series.
@article{AA_1992_4_6_a4,
     author = {A. M. Vershik},
     title = {Lie algebras generated by dynamical systems},
     journal = {Algebra i analiz},
     pages = {103--113},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1992_4_6_a4/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Lie algebras generated by dynamical systems
JO  - Algebra i analiz
PY  - 1992
SP  - 103
EP  - 113
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1992_4_6_a4/
LA  - en
ID  - AA_1992_4_6_a4
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Lie algebras generated by dynamical systems
%J Algebra i analiz
%D 1992
%P 103-113
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1992_4_6_a4/
%G en
%F AA_1992_4_6_a4
A. M. Vershik. Lie algebras generated by dynamical systems. Algebra i analiz, Tome 4 (1992) no. 6, pp. 103-113. http://geodesic.mathdoc.fr/item/AA_1992_4_6_a4/