Lie algebras generated by dynamical systems
Algebra i analiz, Tome 4 (1992) no. 6, pp. 103-113
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we define the class of infinite dimensional $\mathbb Z$-graded Lie algebras generated by dynamical systems and show that these algebras are the special case of .Lie algebras with continuum root system. We establish a precise isomorphism between “sinealgebras” and “rotation-Lie-algebras”, and give the other examples. We briefly mention the algebras of the type $(B)(D)$ and $(C)$ for the dynamical system.
Keywords:
Lie algebra, root system, dynamic system, continuous Dyrikin diagram, $B-C-D$-series.
Mots-clés : rotation algebra
Mots-clés : rotation algebra
@article{AA_1992_4_6_a4,
author = {A. M. Vershik},
title = {Lie algebras generated by dynamical systems},
journal = {Algebra i analiz},
pages = {103--113},
year = {1992},
volume = {4},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_1992_4_6_a4/}
}
A. M. Vershik. Lie algebras generated by dynamical systems. Algebra i analiz, Tome 4 (1992) no. 6, pp. 103-113. http://geodesic.mathdoc.fr/item/AA_1992_4_6_a4/