The periodic Fock bundle
Algebra i analiz, Tome 3 (1991) no. 5, pp. 135-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Fock bundle is an Hermitean vector bundle over Siegel's generalized upper halfplane, the fibers of which can be realized as Hilbert spaces of entire functions. In this paper a “periodic” version of the Fock bundle is constructed, that is, we factor the fibers of the (usual) Fock bundle by a maximal isotropic discrete subgroup of the underlying symplectic vector space. Applications to theta functions are obtained. In fact, it is our intention to work out, in a subsequent publication, major parts of the classical theory of theta functions on the basis ofthe corresponding “doubly periodic” object, obtained by instead factoring by a symplectic lattice.
Keywords: Fock space, Heisenberg group, Siegel's generalized upper halfplane, reproducing kernel, theta function, Hermitean vector bundle, connection.
@article{AA_1991_3_5_a5,
     author = {Jaak Peetre},
     title = {The periodic {Fock} bundle},
     journal = {Algebra i analiz},
     pages = {135--154},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1991},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_1991_3_5_a5/}
}
TY  - JOUR
AU  - Jaak Peetre
TI  - The periodic Fock bundle
JO  - Algebra i analiz
PY  - 1991
SP  - 135
EP  - 154
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1991_3_5_a5/
LA  - en
ID  - AA_1991_3_5_a5
ER  - 
%0 Journal Article
%A Jaak Peetre
%T The periodic Fock bundle
%J Algebra i analiz
%D 1991
%P 135-154
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1991_3_5_a5/
%G en
%F AA_1991_3_5_a5
Jaak Peetre. The periodic Fock bundle. Algebra i analiz, Tome 3 (1991) no. 5, pp. 135-154. http://geodesic.mathdoc.fr/item/AA_1991_3_5_a5/