An element of the disk-algebra that is stationary on a~set of positive length
Algebra i analiz, Tome 1 (1989) no. 3, pp. 83-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_1989_1_3_a2,
     author = {Christopher Bishop},
     title = {An element of the disk-algebra that is stationary on a~set of positive length},
     journal = {Algebra i analiz},
     pages = {83--88},
     publisher = {mathdoc},
     volume = {1},
     number = {3},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_1989_1_3_a2/}
}
TY  - JOUR
AU  - Christopher Bishop
TI  - An element of the disk-algebra that is stationary on a~set of positive length
JO  - Algebra i analiz
PY  - 1989
SP  - 83
EP  - 88
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_1989_1_3_a2/
LA  - ru
ID  - AA_1989_1_3_a2
ER  - 
%0 Journal Article
%A Christopher Bishop
%T An element of the disk-algebra that is stationary on a~set of positive length
%J Algebra i analiz
%D 1989
%P 83-88
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_1989_1_3_a2/
%G ru
%F AA_1989_1_3_a2
Christopher Bishop. An element of the disk-algebra that is stationary on a~set of positive length. Algebra i analiz, Tome 1 (1989) no. 3, pp. 83-88. http://geodesic.mathdoc.fr/item/AA_1989_1_3_a2/