On the search of genuine p-adic modular L-functions for GL(n). With a correction to : on p-adic L-functions of GL(2)×GL(2) over totally real fields
Mémoires de la Société Mathématique de France, no. 67 (1996) , 116 p.

Voir la notice du livre provenant de la source Numdam

The purpose of this monograph is to state several conjectures concerning the existence and the meromorphy of many variable p -adic L -functions attached to many variable Galois representations (for example having values in G L n ( p [ [ X 1 , , X r ] ] ) ) and to present some supporting examples for the conjectures. Our discussion in the earlier sections is therefore quite speculative, but towards the end, we gradually make things more concrete.

Le but de cette monographie est de formuler quelques conjectures concernant l'existence et la méromorphie des fonctions L p -adiques de plusieurs variables attachées à des représentations galoisiennes de plusieurs variables (par exemple, à valeurs dans G L n ( p [ [ X 1 , , X r ] ] ) ) et de présenter quelques exemples motivant nos conjectures. Nous commençons par une discussion assez spéculative, mais vers la fin, nous donnons des résultat plus concrets.

DOI : 10.24033/msmf.381
Classification : 11F13, 11F41, 11F67, 11F70, 11F85
@book{MSMF_1996_2_67__R1_0,
     author = {Hida, Haruzo},
     title = {On the search of genuine $p$-adic modular $L$-functions for $GL(n)$. {With} a correction to : on $p$-adic $L$-functions of $GL(2)\times {}GL(2)$ over totally real fields},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {67},
     year = {1996},
     doi = {10.24033/msmf.381},
     zbl = {0897.11015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MSMF_1996_2_67__R1_0/}
}
TY  - BOOK
AU  - Hida, Haruzo
TI  - On the search of genuine $p$-adic modular $L$-functions for $GL(n)$. With a correction to : on $p$-adic $L$-functions of $GL(2)\times {}GL(2)$ over totally real fields
T3  - Mémoires de la Société Mathématique de France
PY  - 1996
IS  - 67
PB  - Société mathématique de France
UR  - http://geodesic.mathdoc.fr/item/MSMF_1996_2_67__R1_0/
DO  - 10.24033/msmf.381
LA  - en
ID  - MSMF_1996_2_67__R1_0
ER  - 
%0 Book
%A Hida, Haruzo
%T On the search of genuine $p$-adic modular $L$-functions for $GL(n)$. With a correction to : on $p$-adic $L$-functions of $GL(2)\times {}GL(2)$ over totally real fields
%S Mémoires de la Société Mathématique de France
%D 1996
%N 67
%I Société mathématique de France
%U http://geodesic.mathdoc.fr/item/MSMF_1996_2_67__R1_0/
%R 10.24033/msmf.381
%G en
%F MSMF_1996_2_67__R1_0
Hida, Haruzo. On the search of genuine $p$-adic modular $L$-functions for $GL(n)$. With a correction to : on $p$-adic $L$-functions of $GL(2)\times {}GL(2)$ over totally real fields. Mémoires de la Société Mathématique de France, Nouvelle série, no. 67 (1996), 116 p. doi: 10.24033/msmf.381

[1] Y. André, p -adic Betti lattices, In “ p -adic Analysis”, Lecture notes in Math. 1454 (1989), 23-63. | Zbl | MR

[2] D. Blasius, A p-adic property of Hodge classes of abelian varieties, Proc. Symp. Pure Math. 55 Part 2 (1994), 293-308. | Zbl | MR

[3] D. Blasius, Period relations and critical values of L-functions, preprint, 1989.

[4] D. Blasius, On the critical values of Hecke L-series, Ann. of Math. 124 (1986), 23-63. | Zbl | MR

[5] D. Blasius, Appendix to Orloff Critical values of certain tensor product L-functions, Invent. Math. 90 (1987), 181-188. | Zbl | MR

[6] D. Blasius and J. D. Rogawski, Motives for Hilbert modular forms, Inventiones Math. 114 (1993), 55-87. | Zbl | MR

[7] S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, Progress in Math. (Grothendieck Festschrift 1) 86 (1990), 333-400. | Zbl | MR

[8] N. Bourbaki, Algèbre commutative, Hermann Paris, 1961-1965.

[9] H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Sup. 4-th series, 19 (1986), 409-468. | Zbl | MR | Numdam

[10] H. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local compact, Contemporary Math. 165 (1994), 213-237. | Zbl | MR

[11] W. Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301-314. | Zbl | MR

[12] P. Colmez, Résidu en s = 1 des fonctions zêta p-adiques, Inventiones Math. 91 (1988), 371-389. | Zbl | MR

[13] P. Colmez, Fonctions zêta p-adiques en s = 0, J. reine angew. Math. 467 (1995), 89-107. | Zbl | MR

[14] P. Colmez and L. Schneps, p-adic interpolation of special values of Hecke L-functions, Compositio Math. 82 (1992), 143-187. | Zbl | MR | Numdam

[15] P. Deligne, Valeurs des fonctions L et périodes d'intégrales, Proc. Symp. Pure Math. 33 (1979), part 2, 313-346. | Zbl | MR

[16] P. Deligne, Hodge cycles on abelian varieties, Lecture Notes in Math. 900 (1982), 9-100. | Zbl | MR

[17] P. Deligne and K. A. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286. | Zbl | MR

[18] P. Deligne and J.S. Milne, Tannakian categories, Lecture notes in Math. 900 (1982), 101-228. | Zbl | MR

[19] K. Doi, H. Hida and H. Ishii, Discriminant of Hecke fields and the twisted adjoint L-values for GL(2), preprint, 1996.

[20] G. Faltings, Crystalline cohomology and p-adic Galois representations, Proc. JAMI inaugural Conference, supplement to Amer. J. Math. (1988), 25-80. | Zbl | MR

[21] G. Faltings, p-adic Hodge theory, J. Amer. Math. Soc. 1 (1988), 255-299. | Zbl | MR

[22] J.-M. Fontaine, Sur certains types de représentations p-adiques du group de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Ann. of Math. 115 (1982), 529-577. | Zbl | MR

[23] J.-M. Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, Astérisque 65 (1979), 3-80. | Zbl | MR | Numdam

[24] J.-M. Fontaine and W. Messing, p-adic periods and p-adic étale cohomology, Contemporary Math. 67 (1987), 179-207. | Zbl | MR

[25] K. Fujiwara, Deformation rings and Hecke algebras in totally real case, preprint, 1996.

[26] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Scient. Ec. Norm. Sup. 4-th series 11 (1978), 471-542. | Zbl | MR | Numdam

[27] R. Gillard, Relations monomiales entre périodes p-adiques, Invent. Math. 93 (1988), 355-381. | Zbl | MR

[28] R. Greenberg, Iwasawa theory and p-adic deformations of motives, Proc. Symp. Pure Math. 55 (1994) Part 2, 193-223. | Zbl | MR

[29] R. Greenberg, Iwasawa theory for p-adic representations, Adv. Studies Pure Math. 17 (1989), 97-137. | Zbl | MR

[30] M. Harris, Period invariants of Hilbert modular forms I: Trilinear differential operators and L-functions, Lecture note in Math. 1447 (1990), 155-202. | Zbl | MR

[31] M. Harris, L-functions of 2×2 unitary groups and factorization of periods of Hilbert modular forms, J. Amer. Math. Soc. 6 (1993), 637-719. | Zbl | MR

[32] M. Harris and J. Tilouine, p-adic measures and square roots of triple product L-functions, preprint, 1994.

[33] H. Hida, Elementary Theory of L-functions and Eisenstein series, LMSST 26, Cambridge University Press, 1993. | Zbl | MR

[34] H. Hida, On p-adic Hecke algebras for GL2 over totally real fields, Ann. of Math. 128 (1988), 295-384. | Zbl | MR

[35] H. Hida, On nearly ordinary Hecke algebras for GL(2) over totally real fields, Adv. Studies in Pure Math. 17 (1989), 139-169. | Zbl | MR

[36] H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Ec. Norm. Sup. 4-ème série 19 (1986), 231-273. | Zbl | MR | Numdam

[37] H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms I, Inventiones Math. 79 (1985), 159-195; II, Ann. l'Institut Fourier 38 (1988), 1-83. | Zbl | Numdam

[38] H. Hida, Nearly ordinary Hecke algebras and Galois representations of several variables, Proc. JAMI inaugural Conference, supplement to Amer. J. Math. (1988), 115-134. | Zbl | MR

[39] H. Hida, Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math. 110 (1988), 323-382. | Zbl | MR

[40] H. Hida, Le produit de Petersson et de Rankin p-adique, Sém. Théorie des Nombres, 1988-1989, 87-102. | Zbl | MR

[41] H. Hida, On p-adic L-functions of GL(2) × GL(2) over totally real fields, Ann. l'Institut Fourier 41 No.2 (1991), 311-391. | Zbl | MR | Numdam

[42] H. Hida, On the critical values of L-functions of GL(2) and GL(2) × GL(2), Duke Math. J. 74 (1994), 431-529. | Zbl | MR

[43] H. Hida, Congruences of cusp forms and special values of their zeta functions, Inventiones Math. 63 (1981), 225-261. | Zbl | MR

[44] H. Hida, Galois representations into GL2 (ℤp[[X]]) attached to ordinary cusp forms, Inventiones Math. 85 (1986), 545-613. | Zbl | MR

[45] H. Hida, On Selmer groups of adjoint modular Galois representations, Number Theory, Paris, LMS lecture notes series, 1996. | Zbl | MR

[46] H. Hida, Non-critical values of adjoint L-functions for SL(2), preprint, 1997.

[47] H. Hida and J. Tilouine, Anti-cyclotomic Katz p-adic L-functions and congruence modules, Ann. Scient. Ec. Norm. Sup. 26 (1993), 189-259. | Zbl | MR | Numdam

[48] H. Hida and J. Tilouine, On the anticyclotomic main conjecture for CM fields, Inventiones Math. 117 (1994), 89-147. | Zbl | MR

[49] H. Hida, J. Tilouine, and E. Urban, Adjoint modular Galois representations and their Selmer groups, Proc. NAS. 1997 | Zbl | MR

[50] Luc Illusie, Cohomologie de de Rham et cohomologie étale p-adique, Séminaire Bourbaki, 1989-1990 no. 726 | Zbl | Numdam

[51] H. Jacquet, Automorphic forms on GL(2), II, Lecture notes in Math. 278, Springer, 1972 | Zbl | MR

[52] N. M. Katz, p-adic L-functions for CM fields, Inventiones Math. 49 (1978), 199-297 | Zbl | MR

[53] K. Kitagawa, On standard p-adic L-functions of families of elliptic cusp forms, Contemporary Math. 165 (1994), 81-110 | Zbl | MR

[54] B. Mazur, Deforming Galois representations, in "Galois group over ℚ", MSRI publications 16, (1989), 385-437 | Zbl | MR

[55] B. Mazur and J. Tilouine, Représentations Galoisiennes, différentielles de Kähler et "conjectures principales", Publ. IHES 71 (1990), 65-103 | Zbl | MR | Numdam

[56] A. A. Panchishkin, Admissible non-archimedean standard zeta functions associated with Siegel modular forms, Proc. Symp. Pure Math. 55 Part 2 (1994), 251-292 | Zbl | MR

[57] A. A. Panchishkin, Produits triples des formes modulaires et leur interpolation p-adique par la méthode d'Amice-Vélu, preprint 1993

[58] B. Perrin-Riou, Fonction L p-adiques des représentations p-adiques, Astérisque 229 (1995) | Zbl | Numdam

[59] B. Perrin-Riou, Variation de la fonction L p-adique par isogénie, Adv. Studies Pure Math. 17 (1989), 347-358 | Zbl | MR

[60] B. Perrin-Riou, Représentations p-adiques, périodes et fonctions L p-adiques, Séminaire de théorie des nombres, Paris (1987-1988), 213-258 | Zbl | MR

[61] J.-P. Serre, Abelian l-adic representations and elliptic curves, Benjamin, 1968 | Zbl | MR

[62] J.-P. Serre, Groupes algébriques associés aux modules de Hodge-Tate, Astérisque 65 (1979), 155-188 | Zbl | MR | Numdam

[63] J.-P. Serre, Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques, Proc. Symp. Pure Math. 55, Part 1, 377-400 | Zbl | MR

[64] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami-Shoten and Princeton Univ. Press, 1971 | Zbl

[65] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), 637-679 | Zbl | MR

[66] G. Shimura, On the critical values of certain Dirichlet series and the periods of automorphic forms, Inventiones Math. 94 (1988), 245-305 | Zbl | MR

[67] G. Shimura, On the fundamental periods of automorphic forms of arithmetic type, Inventiones Math. 102 (1990), 399-428 | Zbl | MR

[68] J. Tate, p-Divisible groups, Proc. of Conference on local fields, Driebergen 1966, 158-183 | Zbl | MR

[69] R. Taylor, On Galois representations associated to Hilbert modular forms, Inventiones Math. 98 (1989), 265-280 | Zbl | MR

[70] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke modules, Ann. of Math. 142 (1995), 553-572 | Zbl | MR

[71] J. Tilouine, Sur la conjecture principale anticyclotomique, Duke. Math. J. 59 (1989), 629-673 | Zbl | MR

[72] J. Tilouine, Deformation of Galois representations and Hecke algebras, Publ. Mehta Res. Inst., Narosa Publ., Delhi, 1996 | Zbl

[73] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 142 (1995), 443-551 | Zbl | MR

[74] H. Yoshida, On the zeta functions of Shimura varieties and periods of Hilbert modular forms, Duke Math. J. 75 (1994), 121-191 | Zbl | MR

[75] H. Yoshida, On a conjecture of Shimura concerning periods of Hilbert modular forms, Amer. J. Math. 117 (1995), 1019-1038 | Zbl | MR

Cité par Sources :