Induced representations and classification for GSp(2,F) and Sp(2,F)
Paires duales réductives en caractéristiques 2. Induced representations and classifications for GSp(2,F) and Sp(2,F), Mémoires de la Société Mathématique de France, Nouvelle série, no. 52 (1993), pp. 75-133

Voir la notice du chapitre de livre provenant de la source Numdam

Soit F un corps p -adique de characteristique differente de 2 . On caractérise la réducibilité des représentations de G S p ( 2 , F ) et S p ( 2 , F ) qui sont induites paraboliquement par des représentations irréductibles. On donne aussi une classification (modulo les représentations cuspidales) de différentes classes de représentations irréductibles de ces groupes. Un cas spécial est la classification des représentations irréductibles unitaires.

Let F be a p -adic field whose characteristic is different from 2 . The reducibilities of the representations of G S p ( 2 , F ) and S p ( 2 , F ) which are parabolically induced by the irreducible representations are described. We obtain also classifications (modulo cuspidal representations) of various classes of irreducible representations of these groups. In particular, the classification of the irreducible unitary representations is obtained.

DOI : 10.24033/msmf.366
Classification : 22E50
@incollection{MSMF_1993_2_52__75_0,
     author = {Sally, Paul J. Jr. and Tadic, Marko},
     title = {Induced representations and classification for $GSp(2,F)$ and $Sp(2,F)$},
     booktitle = {Paires duales r\'eductives en caract\'eristiques 2. Induced representations and classifications for $GSp (2,F)$ and $Sp (2,F)$},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     pages = {75--133},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {52},
     year = {1993},
     doi = {10.24033/msmf.366},
     mrnumber = {94e:22030},
     zbl = {0784.22008},
     url = {http://geodesic.mathdoc.fr/articles/10.24033/msmf.366/}
}
TY  - CHAP
AU  - Sally, Paul J. Jr.
AU  - Tadic, Marko
TI  - Induced representations and classification for $GSp(2,F)$ and $Sp(2,F)$
BT  - Paires duales réductives en caractéristiques 2. Induced representations and classifications for $GSp (2,F)$ and $Sp (2,F)$
AU  - Collectif
T3  - Mémoires de la Société Mathématique de France
PY  - 1993
SP  - 75
EP  - 133
IS  - 52
PB  - Société mathématique de France
UR  - http://geodesic.mathdoc.fr/articles/10.24033/msmf.366/
DO  - 10.24033/msmf.366
ID  - MSMF_1993_2_52__75_0
ER  - 
%0 Book Section
%A Sally, Paul J. Jr.
%A Tadic, Marko
%T Induced representations and classification for $GSp(2,F)$ and $Sp(2,F)$
%B Paires duales réductives en caractéristiques 2. Induced representations and classifications for $GSp (2,F)$ and $Sp (2,F)$
%A Collectif
%S Mémoires de la Société Mathématique de France
%D 1993
%P 75-133
%N 52
%I Société mathématique de France
%U http://geodesic.mathdoc.fr/articles/10.24033/msmf.366/
%R 10.24033/msmf.366
%F MSMF_1993_2_52__75_0
Sally, Paul J. Jr.; Tadic, Marko. Induced representations and classification for $GSp(2,F)$ and $Sp(2,F)$, dans Paires duales réductives en caractéristiques 2. Induced representations and classifications for $GSp (2,F)$ and $Sp (2,F)$, Mémoires de la Société Mathématique de France, Nouvelle série, no. 52 (1993), pp. 75-133. doi: 10.24033/msmf.366

[BZ] Bernstein, J. and Zelevinsky, A.V., Induced representations of reductive p-adic groups I, Ann. Sci. École Norm Sup. 10 (1977), 441-472. | Zbl | MR | Numdam

[BWh] Borel, A. and Wallach, N., Continuous cohomology, discrete subgroups, and representations of reductive groups, Princeton University Press, Princeton, (1980). | Zbl | MR

[C] Casselman, W., Introduction to the theory of admissible representations of p-adic reductive groups, preprint.

[GeKn] Gelbart, S.S. and Knapp, A. W., L-indistinguishability and R groups for the special linear group, Advan. in Math., 43 (1982), 101-121. | Zbl | MR

[Gu] Gustafson, R., The degenerate principal series for Sp(2n), Mem. of the Amer. Math. Society, 248 (1981), 1-81. | Zbl | MR

[HMr] Howe, R. and Moore, C.C., Asymptotic properties of unitary representations, J. Functional Analysis, 32, No. 1 (1979), 72-96. | Zbl | MR

[J] Jantzen, C., Degenerate principal series for symplectic groups, to appear in Mem. of the Amer. Math. Society. | Zbl

[Ke] Keys, D., On the decomposition of reducible principal series representations of p-adic Chevalley groups, Pacific J. Math, 101 (1982), 351-388. | Zbl | MR

[Mi] Milici, D., On C*-algebras with bounded trace, Glasnik Mat., 8(28) (1973), 7-21. | Zbl | MR

[Mo] Moy, A., Representations of G S p ( 4 ) over a p-adic field : parts 1 and 2, Compositio Math., 66 (1988), 237-328. | Zbl | MR | Numdam

[R1] Rodier, F., Décomposition de la série principale des groupes réductifs p-adiques, Non-Commutative Harmonic Analysis, Lecture Notes in Math. 880, Springer-Verlag, Berlin (1981). | Zbl | MR

[R2] Rodier, F. Sur les représentations non ramifiées des groupes réductifs p-adiques ; l'example de GSp(4), Bull. Soc. Math. France, 116 (1988), 15-42. | Zbl | MR | Numdam

[S1] Shahidi, F., A proof of Langlands conjecture on Plancherel measures ; complementary series for p-adic groups, Ann. of Math., 132 (1990), 273-330. | Zbl | MR

[S2] Shahidi, F., Langlands' conjecture on Plancherel measures of p -adic groups, preprint.

[S3] Shahidi, F., L-functions and representation theory of p-adic, preprint.

[S4] Shahidi, F., Letter.

[T1] Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-archimedean case), Ann. Sci. École Norm. Sup, 19 (1986), 335-382. | Zbl | MR | Numdam

[T2] Tadić, M. Induced representations of GL(n, A) for p-adic division algebras A, J. reine angew. Math., 405 (1990), 48-77. | Zbl | MR

[T3] Tadić, M., Notes on representations of non-archimedean SL(n), Pacific J. Math. (to appear).

[T4] Tadić, M., Representations of p-adic symplectic groups, preprint.

[T5] Tadić, M., On Jaquet modules of induced representations of p-adic symplectic groups, preprint.

[T6] Tadić, M., A structure arising from induction and restriction of representations of classical p-adic groups, preprint.

[T7] Tadić, M., Representations of classical p-adic groups, preprint.

[Wd] Waldspurger, J.-L., Un exercice sur G S p ( 4 , F ) et les représentations de Weil, Bull. Soc. Math. France, 115 (1987), 35-69. | Zbl | MR | Numdam

[Z1] Zelevinsky, A.V., Induced representations of reductive p -adic groups II, On irreducible representations of G L ( n ) , Ann. Sci École Norm Sup., 13 (1980), 165-210. | Zbl | MR | Numdam

[Z2] Zelevinsky, A.V., Representations of Finite Classical Groups, A Hopf Algebra Approach, Lecture Notes in Math 869, Springer-Verlag, Berlin, (1981). | Zbl | MR

Cité par Sources :