On Area-Universal Quadrangulations
Journal of graph algorithms and applications, Tome 25 (2021) no. 1, pp. 171-193
Cet article a éte moissonné depuis la source Journal of Graph Algorythms and Applications website
We study drawings of plane quadrangulations such that every inner face realizes a prescribed area. A plane graph is area-universal if for every assignment of non-negative weights to the inner faces, there exists a straight-line drawing such that the area of each inner face equals the weight of the face. It has been conjectured that all plane quadrangulations are area-universal. We develop methods to prove area-universality via reduction to the area-universality of related graphs. This allows us to establish area-universality for large classes of plane quadrangulations. In particular, our methods are strong enough to prove area-universality of all plane quadrangulations with up to 13 vertices.
@article{JGAA_2021_25_1_a8,
author = {William Evans and Stefan Felsner and Linda Kleist and Stephen Kobourov},
title = {On {Area-Universal} {Quadrangulations}},
journal = {Journal of graph algorithms and applications},
pages = {171--193},
year = {2021},
volume = {25},
number = {1},
doi = {10.7155/jgaa.00555},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00555/}
}
TY - JOUR AU - William Evans AU - Stefan Felsner AU - Linda Kleist AU - Stephen Kobourov TI - On Area-Universal Quadrangulations JO - Journal of graph algorithms and applications PY - 2021 SP - 171 EP - 193 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00555/ DO - 10.7155/jgaa.00555 LA - en ID - JGAA_2021_25_1_a8 ER -
%0 Journal Article %A William Evans %A Stefan Felsner %A Linda Kleist %A Stephen Kobourov %T On Area-Universal Quadrangulations %J Journal of graph algorithms and applications %D 2021 %P 171-193 %V 25 %N 1 %U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00555/ %R 10.7155/jgaa.00555 %G en %F JGAA_2021_25_1_a8
William Evans; Stefan Felsner; Linda Kleist; Stephen Kobourov. On Area-Universal Quadrangulations. Journal of graph algorithms and applications, Tome 25 (2021) no. 1, pp. 171-193. doi: 10.7155/jgaa.00555
Cité par Sources :