Every graph admits an unambiguous bold drawing
Journal of graph algorithms and applications, Tome 19 (2015) no. 1, pp. 299-312 Cet article a éte moissonné depuis la source Journal of Graph Algorythms and Applications website

Voir la notice de l'article

Let r and w be fixed positive numbers, w r. In a bold drawing of a graph, every vertex is represented by a disk of radius r, and every edge by a narrow rectangle of width w. We solve a problem of van Kreveld by showing that every graph admits a bold drawing in which the region occupied by the union of the disks and rectangles representing the vertices and edges does not contain any disk of radius r other than the ones representing the vertices.
@article{JGAA_2015_19_1_a13,
     author = {J\'anos Pach},
     title = {Every graph admits an unambiguous bold drawing},
     journal = {Journal of graph algorithms and applications},
     pages = {299--312},
     year = {2015},
     volume = {19},
     number = {1},
     doi = {10.7155/jgaa.00359},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00359/}
}
TY  - JOUR
AU  - János Pach
TI  - Every graph admits an unambiguous bold drawing
JO  - Journal of graph algorithms and applications
PY  - 2015
SP  - 299
EP  - 312
VL  - 19
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00359/
DO  - 10.7155/jgaa.00359
LA  - en
ID  - JGAA_2015_19_1_a13
ER  - 
%0 Journal Article
%A János Pach
%T Every graph admits an unambiguous bold drawing
%J Journal of graph algorithms and applications
%D 2015
%P 299-312
%V 19
%N 1
%U http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00359/
%R 10.7155/jgaa.00359
%G en
%F JGAA_2015_19_1_a13
János Pach. Every graph admits an unambiguous bold drawing. Journal of graph algorithms and applications, Tome 19 (2015) no. 1, pp. 299-312. doi: 10.7155/jgaa.00359

Cité par Sources :