Finding a Nonempty Algebraic Subset of an Edge Set in Linear Time
Journal of graph algorithms and applications, Tome 11 (2007) no. 1, pp. 239-257
Cet article a éte moissonné depuis la source Journal of Graph Algorythms and Applications website
A set of edges of a hypergraph H is an algebraic set if its characteristic vector can be expressed as a linear combination of rows of the (node-edge) incidence matrix of H. Recently it was proven that deciding whether or not a given edge-set of H contains a non-empty algebraic set is an NP-complete problem. In this paper we give a linear time algorithm to decide if a given edge-set contains a non-empty algebraic set when the hypergraph is a graph.
@article{JGAA_2007_11_1_a9,
author = {Mauro Mezzini},
title = {Finding a {Nonempty} {Algebraic} {Subset} of an {Edge} {Set} in {Linear} {Time}},
journal = {Journal of graph algorithms and applications},
pages = {239--257},
year = {2007},
volume = {11},
number = {1},
doi = {10.7155/jgaa.00144},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00144/}
}
TY - JOUR AU - Mauro Mezzini TI - Finding a Nonempty Algebraic Subset of an Edge Set in Linear Time JO - Journal of graph algorithms and applications PY - 2007 SP - 239 EP - 257 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.7155/jgaa.00144/ DO - 10.7155/jgaa.00144 LA - en ID - JGAA_2007_11_1_a9 ER -
Mauro Mezzini. Finding a Nonempty Algebraic Subset of an Edge Set in Linear Time. Journal of graph algorithms and applications, Tome 11 (2007) no. 1, pp. 239-257. doi: 10.7155/jgaa.00144
Cité par Sources :