Keywords: quantum group; quantum $\mathfrak{sl}_2$; quantum adjoint action; tensor categories; braided tensor product; braided adjoint action
@article{10_5817_AM2024_5_365,
author = {Pand\v{z}i\'c, Pavle and Somberg, Petr},
title = {Braided coproduct, antipode and adjoint action for $U_q(sl_2)$},
journal = {Archivum mathematicum},
pages = {365--376},
year = {2024},
volume = {60},
number = {5},
doi = {10.5817/AM2024-5-365},
mrnumber = {4840183},
zbl = {07980758},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-365/}
}
TY - JOUR AU - Pandžić, Pavle AU - Somberg, Petr TI - Braided coproduct, antipode and adjoint action for $U_q(sl_2)$ JO - Archivum mathematicum PY - 2024 SP - 365 EP - 376 VL - 60 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-365/ DO - 10.5817/AM2024-5-365 LA - en ID - 10_5817_AM2024_5_365 ER -
Pandžić, Pavle; Somberg, Petr. Braided coproduct, antipode and adjoint action for $U_q(sl_2)$. Archivum mathematicum, Tome 60 (2024) no. 5, pp. 365-376. doi: 10.5817/AM2024-5-365
[1] Burdik, C., Navratil, O., Posta, S.: The adjoint representation of quantum algebra $U_q(sl_2)$. J. Nonlinear Math. Phys. 16 (1) (2009), 63–75. | DOI | MR
[2] Huang, J.-S., Pandžić, P.: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Amer. Math. Soc. 15 (1) (2002), 185–202. | DOI | MR
[3] Huang, J.-S., Pandžić, P.: Dirac Operators in Representation Theory. Mathematics: Theory and Applications, Birkhauser, 2006. | MR
[4] Klimyk, A., Schmüdgen, K.: Quantum groups and their representations. Texts and Monographs in Physics, pp. xx+552, Springer-Verlag, Berlin, 1997. | MR
[5] Majid, S.: Quantum and braided linear algebra. J. Math. Phys. 34 (1993), 1176–1196, | DOI | MR
[6] Majid, S.: Transmutation theory and rank for quantum braided groups. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 113, 1993, pp. 45–70. | DOI | MR
[7] Majid, S.: Algebras and Hopf algebras in braided categories. Advances in Hopf algebras, vol. 158, Marcel Dekker, Lec. Notes Pure Appl. Math. ed., 1994. | MR
[8] Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, 1995. | MR
[9] Majid, S.: Quantum and braided ZX calculus. J. Phys. A: Math. Theor. 55 (2022), 34 pp., paper No. 254007. | DOI | MR
[10] Pandžić, P., Somberg, P.: Dirac operator for the quantum group $U_q(\mathfrak{sl}_3)$. in preparation.
[11] Pandžić, P., Somberg, P.: Dirac operator and its cohomology for the quantum group $U_q(\mathfrak{sl}_2)$. J. Math. Phys. 58 (4) (2017), 13 pp., Paper No. 041702. | MR
[12] Parthasarathy, R.: Dirac operator and the discrete series. Ann. of Math. 96 (1972), 1–30. | DOI | MR
[13] Vogan, D.: Dirac operators and unitary representations. 3 talks at MIT Lie groups seminar, Fall 1997.
Cité par Sources :