Braided coproduct, antipode and adjoint action for $U_q(sl_2)$
Archivum mathematicum, Tome 60 (2024) no. 5, pp. 365-376 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Motivated by our attempts to construct an analogue of the Dirac operator in the setting of $U_q(\mathfrak{sl}_n)$, we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra $U_q(\mathfrak{sl}_2)$. The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid.
Motivated by our attempts to construct an analogue of the Dirac operator in the setting of $U_q(\mathfrak{sl}_n)$, we write down explicitly the braided coproduct, antipode, and adjoint action for quantum algebra $U_q(\mathfrak{sl}_2)$. The braided adjoint action is seen to coincide with the ordinary quantum adjoint action, which also follows from the general results of S. Majid.
DOI : 10.5817/AM2024-5-365
Classification : 16T20, 20G42
Keywords: quantum group; quantum $\mathfrak{sl}_2$; quantum adjoint action; tensor categories; braided tensor product; braided adjoint action
@article{10_5817_AM2024_5_365,
     author = {Pand\v{z}i\'c, Pavle and Somberg, Petr},
     title = {Braided coproduct, antipode and adjoint action for $U_q(sl_2)$},
     journal = {Archivum mathematicum},
     pages = {365--376},
     year = {2024},
     volume = {60},
     number = {5},
     doi = {10.5817/AM2024-5-365},
     mrnumber = {4840183},
     zbl = {07980758},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-365/}
}
TY  - JOUR
AU  - Pandžić, Pavle
AU  - Somberg, Petr
TI  - Braided coproduct, antipode and adjoint action for $U_q(sl_2)$
JO  - Archivum mathematicum
PY  - 2024
SP  - 365
EP  - 376
VL  - 60
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-365/
DO  - 10.5817/AM2024-5-365
LA  - en
ID  - 10_5817_AM2024_5_365
ER  - 
%0 Journal Article
%A Pandžić, Pavle
%A Somberg, Petr
%T Braided coproduct, antipode and adjoint action for $U_q(sl_2)$
%J Archivum mathematicum
%D 2024
%P 365-376
%V 60
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-365/
%R 10.5817/AM2024-5-365
%G en
%F 10_5817_AM2024_5_365
Pandžić, Pavle; Somberg, Petr. Braided coproduct, antipode and adjoint action for $U_q(sl_2)$. Archivum mathematicum, Tome 60 (2024) no. 5, pp. 365-376. doi: 10.5817/AM2024-5-365

[1] Burdik, C., Navratil, O., Posta, S.: The adjoint representation of quantum algebra $U_q(sl_2)$. J. Nonlinear Math. Phys. 16 (1) (2009), 63–75. | DOI | MR

[2] Huang, J.-S., Pandžić, P.: Dirac cohomology, unitary representations and a proof of a conjecture of Vogan. J. Amer. Math. Soc. 15 (1) (2002), 185–202. | DOI | MR

[3] Huang, J.-S., Pandžić, P.: Dirac Operators in Representation Theory. Mathematics: Theory and Applications, Birkhauser, 2006. | MR

[4] Klimyk, A., Schmüdgen, K.: Quantum groups and their representations. Texts and Monographs in Physics, pp. xx+552, Springer-Verlag, Berlin, 1997. | MR

[5] Majid, S.: Quantum and braided linear algebra. J. Math. Phys. 34 (1993), 1176–1196, | DOI | MR

[6] Majid, S.: Transmutation theory and rank for quantum braided groups. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 113, 1993, pp. 45–70. | DOI | MR

[7] Majid, S.: Algebras and Hopf algebras in braided categories. Advances in Hopf algebras, vol. 158, Marcel Dekker, Lec. Notes Pure Appl. Math. ed., 1994. | MR

[8] Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, 1995. | MR

[9] Majid, S.: Quantum and braided ZX calculus. J. Phys. A: Math. Theor. 55 (2022), 34 pp., paper No. 254007. | DOI | MR

[10] Pandžić, P., Somberg, P.: Dirac operator for the quantum group $U_q(\mathfrak{sl}_3)$. in preparation.

[11] Pandžić, P., Somberg, P.: Dirac operator and its cohomology for the quantum group $U_q(\mathfrak{sl}_2)$. J. Math. Phys. 58 (4) (2017), 13 pp., Paper No. 041702. | MR

[12] Parthasarathy, R.: Dirac operator and the discrete series. Ann. of Math. 96 (1972), 1–30. | DOI | MR

[13] Vogan, D.: Dirac operators and unitary representations. 3 talks at MIT Lie groups seminar, Fall 1997.

Cité par Sources :