Quantized semisimple Lie groups
Archivum mathematicum, Tome 60 (2024) no. 5, pp. 311-349 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The goal of this expository paper is to give a quick introduction to $q$-deformations of semisimple Lie groups. We discuss principally the rank one examples of $\mathcal{U}_q(\mathfrak{sl}_2)$, $\mathcal{O}(\mathrm{SU}_q(2))$, $\mathcal{D}(\mathrm{SL}_q(2,\mathbb{C}))$ and related algebras. We treat quantized enveloping algebras, representations of $\mathcal{U}_q(\mathfrak{sl}_2)$, generalities on Hopf algebras and quantum groups, $*$-structures, quantized algebras of functions on $q$-deformed compact semisimple groups, the Peter-Weyl theorem, $*$-Hopf algebras associated to complex semisimple Lie groups and the Drinfeld double, representations of $\mathrm{SL}_q(2,\mathbb{C})$, the Plancherel formula for $\mathrm{SL}_q(2,\mathbb{C})$. This exposition is expanding the material treated in a series of lectures given by the second author at the CaLISTA CA 21100 Training School, “Quantum Groups and Noncommutative Geometry in Prague” in 2023.
The goal of this expository paper is to give a quick introduction to $q$-deformations of semisimple Lie groups. We discuss principally the rank one examples of $\mathcal{U}_q(\mathfrak{sl}_2)$, $\mathcal{O}(\mathrm{SU}_q(2))$, $\mathcal{D}(\mathrm{SL}_q(2,\mathbb{C}))$ and related algebras. We treat quantized enveloping algebras, representations of $\mathcal{U}_q(\mathfrak{sl}_2)$, generalities on Hopf algebras and quantum groups, $*$-structures, quantized algebras of functions on $q$-deformed compact semisimple groups, the Peter-Weyl theorem, $*$-Hopf algebras associated to complex semisimple Lie groups and the Drinfeld double, representations of $\mathrm{SL}_q(2,\mathbb{C})$, the Plancherel formula for $\mathrm{SL}_q(2,\mathbb{C})$. This exposition is expanding the material treated in a series of lectures given by the second author at the CaLISTA CA 21100 Training School, “Quantum Groups and Noncommutative Geometry in Prague” in 2023.
DOI : 10.5817/AM2024-5-311
Classification : 16T20, 17B37, 46L67
Keywords: quantum groups; representation theory; semisimple Lie algebras
@article{10_5817_AM2024_5_311,
     author = {Fioresi, Rita and Yuncken, Robert},
     title = {Quantized semisimple {Lie} groups},
     journal = {Archivum mathematicum},
     pages = {311--349},
     year = {2024},
     volume = {60},
     number = {5},
     doi = {10.5817/AM2024-5-311},
     mrnumber = {4840181},
     zbl = {07980756},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-311/}
}
TY  - JOUR
AU  - Fioresi, Rita
AU  - Yuncken, Robert
TI  - Quantized semisimple Lie groups
JO  - Archivum mathematicum
PY  - 2024
SP  - 311
EP  - 349
VL  - 60
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-311/
DO  - 10.5817/AM2024-5-311
LA  - en
ID  - 10_5817_AM2024_5_311
ER  - 
%0 Journal Article
%A Fioresi, Rita
%A Yuncken, Robert
%T Quantized semisimple Lie groups
%J Archivum mathematicum
%D 2024
%P 311-349
%V 60
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-311/
%R 10.5817/AM2024-5-311
%G en
%F 10_5817_AM2024_5_311
Fioresi, Rita; Yuncken, Robert. Quantized semisimple Lie groups. Archivum mathematicum, Tome 60 (2024) no. 5, pp. 311-349. doi: 10.5817/AM2024-5-311

[1] Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Differential operators on the base affine space and a study of ${\mathfrak{g}}$-modules. Halsted Press [John Wiley & Sons, Inc.], New York-Toronto, Ont., 1975, 21–64. | MR

[2] Buffenoir, E., Roche, Ph.: Harmonic analysis on the quantum Lorentz group. Comm. Math. Phys. 207 (3) (1999), 499–555. | DOI | MR

[3] Čap, A., Slovák, J., Souček, V.: Bernstein-Gelfand-Gelfand sequence. Ann. of Math. (2) 154 (1) (2001), 97–113. | DOI | MR

[4] De Commer, K.: On a correspondence between ${\rm SU}_q(2),\ \widetilde{E}_q(2)$ and $\widetilde{\rm SU}_q(1,1)$. Comm. Math. Phys. 304 (1) (2011), 187–228. | DOI | MR

[5] De Commer, K., Dzokou Talla, J.R.: Invariant integrals on coideals and their drinfeld doubles. arXiv:2112.07476 [math.QA], 2021. | MR

[6] De Commer, K., Dzokou Talla, J.R.: Quantum $sl(2,\mathbb{R})$ and its irreducible representations. arXiv:2107.04258 [math.QA], 2021. | MR

[7] Dixmier, J.: Enveloping algebras. Grad. Stud. Math., vol. 11, Providence, RI: AMS, American Mathematical Society, 1996. | DOI | MR

[8] Drinfel’d, V.G.: Quantum groups. Proc. Int. Congr. Math., vol. 1, Berkeley/Calif 1986, 1987, pp. 798–820. | MR

[9] Drinfel’d, V.G.: Quantum groups. Journal of Soviet Mathematics 41 92) (1988), 898–915. | DOI | MR

[10] Faddeev, L.D., Reshetikhin, N.Yu., Takhtadzhan, L.A.: Quantization of Lie groups and Lie algebras. Algebraic Analysis 1 (1989), 129–139, Dedicated to Prof. Mikio Sato on the Occas. of his Sixtieth Birthday. | MR

[11] Fioresi, R., Lledó, M.A.: The Minkowski and conformal superspaces. The classical and quantum descriptions. Hackensack, NJ: World Scientific, 2015. | MR

[12] Gavarini, F.: The global quantum duality principle. J. Reine Angew. Math. 612 (2007), 17–33. | MR

[13] Heckenberger, I., Kolb, S.: On the Bernstein-Gelfand-Gelfand resolution for Kac-Moody algebras and quantized enveloping algebras. Transform. Groups 12 (4) (2007), 647–655. | DOI | MR

[14] Heckenberger, I., Kolb, S.: Differential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds. J. Geom. Phys. 57 (11) (2007), 2316–2344. | DOI | MR

[15] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Grad. Stud. Math., vol. 34, Providence, RI: American Mathematical Society (AMS), 2001, reprint with corrections of the 1978 original edition. | DOI | MR

[16] Jimbo, M.: A $q$-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11 (1986), 247–252. | DOI | MR

[17] Joseph, A.: Quantum groups and their primitive ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 29, Springer Verlag, Berlin, 1995. | MR

[18] Kassel, Ch.: Quantum groups. Grad. Texts Math., vol. 155, New York, NY: Springer Verlag, 1995. | MR

[19] Klimyk, A., Schmüdgen, K.: Quantum groups and their representations. Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997. | MR

[20] Knapp, A.W.: Lie groups beyond an introduction. 2nd ed., Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 2002. | MR

[21] Koelink, E., Kustermans, J.: A locally compact quantum group analogue of the normalizer of $\rm SU(1,1)$ in ${\rm SL}(2,\mathbb{C})$. Comm. Math. Phys. 233 (2) (2003), 231–296. | DOI | MR

[22] Kulish, P.P., Reshetikhin, N.Yu.: Quantum linear problem for the sine-gordon equation and higher representations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 101 (1981), 101–110. | MR

[23] Montgomery, S.: Hopf algebras and their actions on rings. Reg. Conf. Ser. Math., vol. 82, Providence, RI: American Mathematical Society, 1993, Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. | MR

[24] Ó Buachalla, R., Somberg, P.: Lusztig’s quantum root vectors and a Dolbeault complex for the $A$-series full quantum flag manifolds. arXiv:2312.13493 [math.QA], 2023.

[25] Podleś, P., Woronowicz, S.L.: Quantum deformation of Lorentz group. Comm. Math. Phys. 130 (2) (1990), 381–431. | DOI | MR

[26] Sklyanin, E.K.: On an algebra generated by quadratic relations. Uspekhi Mat. Nauk 40 (1985), 214.

[27] Van Daele, A.: Multiplier Hopf algebras. Trans. Amer. Math. Soc. 342 (2) (1994), 917–932. | DOI | MR

[28] Van Daele, A.: An algebraic framework for group duality. Adv. Math. 140 (2) (1998), 323–366. | DOI | MR

[29] Varadarajan, V.S.: Lie groups, Lie algebras, and their representations. Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. | MR

[30] Voigt, Ch., Yuncken, R.: The plancherel formula for complex semisimple quantum groups. Ann. Sci. Éc. Norm. Sup. (to appear), , 2019. | arXiv | MR

[31] Voigt, Ch., Yuncken, R.: Equivariant Fredholm modules for the full quantum flag manifold of ${\rm SU}_q(3)$. Doc. Math. 20 (2015), 433–490. | DOI | MR

[32] Voigt, Ch., Yuncken, R.: Complex semisimple quantum groups and representation theory. Lect. Notes in Math., Springer, Cham, 2020. | MR

[33] Woronowicz, S.L.: Compact matrix pseudogroups. Comm. Math. Phys. 111 (4) (1987), 613–665. | DOI | MR

[34] Woronowicz, S.L.: Twisted ${\rm SU}(2)$ group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23 (1) (1987), 117–181. | DOI | MR

Cité par Sources :