Quantization of semisimple real Lie groups
Archivum mathematicum, Tome 60 (2024) no. 5, pp. 285-310 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We provide a novel construction of quantized universal enveloping $*$-algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C$^*$-algebra of an arbitrary semisimple algebraic real Lie group.
We provide a novel construction of quantized universal enveloping $*$-algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C$^*$-algebra of an arbitrary semisimple algebraic real Lie group.
DOI : 10.5817/AM2024-5-285
Classification : 17B37, 20G42, 46L67
Keywords: quantum groups; real forms; quantized enveloping algebras; Harish-Chandra modules
@article{10_5817_AM2024_5_285,
     author = {De Commer, Kenny},
     title = {Quantization of semisimple real {Lie} groups},
     journal = {Archivum mathematicum},
     pages = {285--310},
     year = {2024},
     volume = {60},
     number = {5},
     doi = {10.5817/AM2024-5-285},
     mrnumber = {4840180},
     zbl = {07980755},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-285/}
}
TY  - JOUR
AU  - De Commer, Kenny
TI  - Quantization of semisimple real Lie groups
JO  - Archivum mathematicum
PY  - 2024
SP  - 285
EP  - 310
VL  - 60
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-285/
DO  - 10.5817/AM2024-5-285
LA  - en
ID  - 10_5817_AM2024_5_285
ER  - 
%0 Journal Article
%A De Commer, Kenny
%T Quantization of semisimple real Lie groups
%J Archivum mathematicum
%D 2024
%P 285-310
%V 60
%N 5
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2024-5-285/
%R 10.5817/AM2024-5-285
%G en
%F 10_5817_AM2024_5_285
De Commer, Kenny. Quantization of semisimple real Lie groups. Archivum mathematicum, Tome 60 (2024) no. 5, pp. 285-310. doi: 10.5817/AM2024-5-285

[1] Abella, A., Santos, W.F., Hai, M.: Compact coalgebras, compact quantum groups and the positive antipode. São Paulo J. Math. Sci. 3 (2) (2009), 193–229. | DOI | MR

[2] Arano, Y.: Comparison of unitary duals of Drinfeld doubles and complex semisimple Lie groups. Comm. Math. Phys. 351 (3) (2017), 1137–1147. | DOI | MR

[3] Arano, Y.: Unitary spherical representations of Drinfeld doubles. J. Reine Angew. Math. 742 (2018), 157–186. | DOI | MR

[4] Baldoni, W., Frajria, P.M.: The quantum analog of a symmetric pair: A construction in type $(C_n, A_1 \times C_{n-1})$. Trans. Amer. Math. Soc. 8 (1997), 3235–3276. | DOI | MR

[5] Bao, H., Wang, W.: Canonical bases arising from quantum symmetric pairs. Invent. Math. 213 (3) (2018), 1099–1177. | DOI | MR

[6] Caenepeel, S., Militaru, G., Shenglin, Z.: Crossed modules and Doi-Hopf modules. Israel J. Math. 100 (1997), 221–247. | DOI | MR

[7] Chari, V., Pressley, A.N.: A guide to quantum groups. Cambridge University Press, 1995. | MR

[8] Chirvasitu, A.: Relative Fourier transforms and expectations on coideal subalgebras. J. Algebra 516 (2018), 271–297. | DOI | MR

[9] Ciccoli, N., Gavarini, F.: A quantum duality principle for coisotropic subgroups and Poisson quotients. Adv. Math. 199 (2006), 104–135. | DOI | MR

[10] Dăscălescu, S., Năstăsescu, C., Raianu, Ş.: Hopf algebras: An introduction. Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker, 2001. | MR

[11] De Commer, K., Dzokou Talla, J.R.: Invariant integrals on coideals and their Drinfeld doubles. Int. Math. Res. Not. 2024 (14) (2024), 10650–10677. | DOI | MR

[12] De Commer, K., Dzokou Talla, J.R.: Quantum $SL(2,\mathbb{R})$ and its irreducible representations. J. Operator Theory 91 (2) (2024), 101–128. | MR

[13] De Commer, K., Matassa, M.: Quantum flag manifolds, quantum symmetric spaces and their associated universal K-matrices. Adv. Math. 366 (2020), 107029. | DOI | MR

[14] De Commer, K., Neshveyev, S., Tuset, L., Yamashita, M.: Comparison of quantizations of symmetric spaces: cyclotomic Knizhnik-Zamolodchikov equations and Letzter-Kolb coideals. Forum of Mathematics, Pi, vol. 11 (14), Cambridge University Press, 2023, doi:10.1017/fmp.2023.11. | DOI | MR

[15] De Commer, K., Yamashit, M.: Tannaka-Kreĭn duality for compact quantum homogeneous spaces. I. General Theory. Theory Appl. Categ. 28 (31) (2013), 1099–1138. | MR

[16] Dijkhuizen, M.S.: Some remarks on the construction of quantum symmetric spaces. Representations of Lie Groups, Lie Algebras and Their Quantum Analogues, Acta Appl. Math., vol. 44, Kluwer Academic Publishers, 1996, pp. 59–80. | DOI | MR

[17] Dijkhuizen, M.S., Koornwinder, T.H.: CQG algebras: a direct algebraic approach to compact quantum groups. Lett. Math. Phys. 32 (1994), 315–330. | DOI | MR

[18] Dijkhuizen, M.S., Noumi, M.: A family of quantum projective spaces and related q-hypergeometric orthogonal polynomials. Trans. Amer. Math. Soc. 350 (8) (1998), 3269–3296. | DOI | MR

[19] Doi, Y.: Unifying Hopf modules. J. Algebra 153 (1992), 373–385. | DOI | MR

[20] Drinfeld, V.G.: Quantum groups. Proceedings of the International Congress of Mathematicians, Berkeley, Calif., 1986, Amer. Math. Soc., 1987, pp. 798–820. | MR

[21] Drinfeld, V.G.: On Poisson homogeneous spaces of Poisson-Lie groups. Teoret. Mat. Fiz. 95 (2) (1993), 226–227. | MR

[22] Etingof, P., Schiffmann, O.: Lectures on Quantum Groups. Lect. Math. Phys., International Press, 1998. | MR

[23] Jimbo, M.: A $q$-difference analog of $U(\mathfrak{g})$ and the Yang-Baxter equation. Lett. Math. Phys. 10 (1985), 63–69. | DOI | MR

[24] Koelink, E., Kustermans, J.: A locally compact quantum group analogue of the normalizer of $SU(1,1)$ in $SL(2,\mathbb{C})$. Comm. Math. Phys. 233 (2003), 231–296. | DOI | MR

[25] Kolb, S.: Quantum symmetric Kac-Moody pairs. Adv. Math. 267 (2014), 395–469. | DOI | MR

[26] Koornwinder, T.: Askey-Wilson polynomials as zonal spherical functions on the $SU(2)$ quantum group. SIAM J. Math. Anal 24 (N3) (1993), 795–813. | DOI | MR

[27] Koppinen, M.: Variations on the smash product with applications to group-graded rings. J. Pure Appl. Algebra 104 (1995), 61–80. | DOI | MR

[28] Korogodsky, L.I.: Quantum Group $SU(1, 1) \rtimes \mathbb{Z}_2$ and super tensor products. Comm. Math. Phys. 163 (1994), 433–460. | DOI | MR

[29] Letzter, G.: Symmetric pairs for quantized enveloping algebras. J. Algebra 220 (2) (1999), 729–767. | DOI | MR

[30] Letzter, G.: Coideal subalgebras and quantum symmetric pairs. New directions in Hopf algebras, vol. 43, Cambridge Univ. Press, Cambridge, Math. Sci. Res. Inst. Publ. ed., 2002, pp. 141–170. | MR

[31] Levendorskii, S., Soibelman, Y.: Algebras of Functions on Compact Quantum Groups, Schubert Cells and Quantum Tori. Comm. Math. Phys. 139 (1991), 141–170. | DOI | MR

[32] Müller, E.F., Schneider, H.-J.: Quantum homogeneous spaces with faithfully flat module structures. Israel J. Math. 111 (1999), 157–190. | DOI | MR

[33] Noumi, M.: Macdonalds symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces. Adv. Math. 123 (1) (1996), 16–77. | DOI | MR

[34] Noumi, M., Sugitani, T.: Quantum symmetric spaces and related q-orthogonal polynomials. Group Theoretical Methods in Physics (ICGTMP) (Toyonaka, Japan, 1994), World Sci. Publishing, River Edge, N.J., 1995, pp. 28–40. | MR

[35] Schauenburg, P.: Doi-Koppinen Hopf Modules Versus Entwined Modules. New York J. Math. 6 (200), 325–329. | MR

[36] Takeuchi, M.: Relative Hopfmodules – Equivalences and freeness criteria. J. Algebra 60 (1979), 452–471. | DOI | MR

[37] Takeuchi, M.: $\mathrm{Ext}_{\mathrm{ad}}(SpR,\mu ^A) \cong \widehat{\mathrm{Br}}(A/k)$. J. Algebra 67 (1980), 436–475. | MR

[38] Twietmeyer, E.: Real forms of $U_q(\mathfrak{g})$. Lett. Math. Phys. 24 (1992), 49–58. | MR

[39] Voigt, C., Yuncken, R.: Complex Semisimple Quantum Groups and Representation Theory. Lecture Notes in Mathematics, vol. 2264, Springer International Publishing, 2020, pp. 376+X pp. | MR

[40] Voigt, C., Yuncken, R.: The Plancherel formula for complex semisimple quantum groups. Ann. Sci. Éc. Norm. Supér. 56 (1) (2023), 299–322. | DOI | MR

[41] Woronowicz, S.L.: Extended $SU(1,1)$ quantum group. Hilbert space level. Preprint KMMF (unfinished) (2000). | MR

[42] Woronowicz, S.L.: Compact matrix pseudogroups. Comm. Math. Phys. 111 (1987), 613–665. | DOI | MR

[43] Woronowicz, S.L.: Tannaka-Krein duality for compact matrix pseudogroups. Twisted $SU(N)$ groups. Invent. Math. 93 (1) (1988), 35–76. | DOI | MR

[44] Woronowicz, S.L.: Unbounded elements affiliated with C$^*$-algebras and noncompact quantum groups. Comm. Math. Phys. 136 (1991), 399–432. | DOI | MR

Cité par Sources :