Keywords: Cartan geometry; group manifold; classical gauge field theory of gravity; Cartan supergeometry; supergroup manifold; supergravity
@article{10_5817_AM2024_4_243,
author = {Fran\c{c}ois, Jordan and Ravera, Lucrezia},
title = {Cartan geometry, supergravity and group manifold approach},
journal = {Archivum mathematicum},
pages = {243--281},
year = {2024},
volume = {60},
number = {4},
doi = {10.5817/AM2024-4-243},
mrnumber = {4833551},
zbl = {07980753},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-4-243/}
}
TY - JOUR AU - François, Jordan AU - Ravera, Lucrezia TI - Cartan geometry, supergravity and group manifold approach JO - Archivum mathematicum PY - 2024 SP - 243 EP - 281 VL - 60 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-4-243/ DO - 10.5817/AM2024-4-243 LA - en ID - 10_5817_AM2024_4_243 ER -
François, Jordan; Ravera, Lucrezia. Cartan geometry, supergravity and group manifold approach. Archivum mathematicum, Tome 60 (2024) no. 4, pp. 243-281. doi: 10.5817/AM2024-4-243
[1] Abbott, L.F., Deser, S.: Charge definition in non-Abelian gauge theories. Phys. Lett. B 114 (4) (1982), 259–263. | DOI | MR
[2] Alekseevsky, D.V., Michor, P.W.: Differential geometry of Cartan connections. Publ. Math. Debrecen 47 (3–4) (1995), 349–375. | DOI | MR
[3] Alfonsi, L.: The puzzle of global double field theory: Open problems and the case for a higher Kaluza-Klein perspective. Fortsch. Phys. 69 (7) (2021), 2000102. | DOI | MR
[4] Andrianopoli, L., D’Auria, R.: N=1 and N=2 pure supergravities on a manifold with boundary. JHEP 08 (2014), 012. | DOI
[5] Andrianopoli, L., D’Auria, R., Ravera, L.: Hidden Gauge structure of supersymmetric free differential algebras. JHEP 08 (2016), 095. | DOI | MR
[6] Andrianopoli, L., D’Auria, R., Ravera, L.: More on the hidden symmetries of 11D supergravity. Phys. Lett. B 772 (2017), 578–585. | DOI
[7] Andrianopoli, L., Ravera, L.: On the geometric approach to the boundary problem in supergravity. Universe 7 (12) (2021), 463. | DOI
[8] Attard, J., François, J.: Tractors and Twistors from conformal Cartan geometry: a gauge theoretic approach II. Twistors. Classical Quantum Gravity 34 (8) (2017), 28 pp. | MR
[9] Attard, J., François, J.: Tractors and twistors from conformal Cartan geometry: a Gauge theoretic approach I. Tractors. Adv. Theor. Math. Phys. 22 (8) (2018), 1831–1883. | DOI | MR
[10] Attard, J., François, J., Lazzarini, S.: Weyl gravity and Cartan geometry. Phys. Rev. D 93 (2016), 085032. | DOI | MR
[11] Attard, J., François, J., Lazzarini, S., Masson, T.: Cartan connections and Atiyah Lie algebroids. J. Geom. Phys. 148 (2020), 103541. | DOI | MR
[12] Baez, J.C., Huerta, J.: An invitation to higher Gauge theory. Gen. Relativity Gravitation 43 (9) (2011), 2335–2392. | DOI | MR
[13] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. Math. 24 (4) (1994), 1191–1217. | DOI | MR | Zbl
[14] Becchi, C., Rouet, A., Stora, R.: Renormalization of the Abelian Higgs-Kibble Model. Comm. Math. Phys. 42 (1975), 127–162. | DOI | MR
[15] Becchi, C., Rouet, A., Stora, R.: Renormalization of Gauge theories. Ann. Physics 98 (1976), 287–321. | DOI | MR
[16] Berezin, F.A.: The method of second quantization. Pure Appl. Phys., New York, Academic Press, 1966. | MR
[17] Berezin, F.A.: Introduction to Superanalysis. Mathematical Physics and Applied Mathematics, Springer, 1st ed., 1987. | MR
[18] Berezin, F.A., Kac, G.I.: Lie groups with commuting and anticommuting parameters. Sb. Math. 11 (3) (1970), 311–325. | DOI | MR
[19] Berezin, F.A., Marinov, M.S.: Particle spin dynamics as the grassmann variant of classical mechanics. Ann. Physics 104 (2) (1977), 336–362. | DOI
[20] Berghofer, P., François, J., Friederich, S., Gomes, H., Hetzroni, G., Maas, A., Sondenheimer, R.: Gauge Symmetries, Symmetry Breaking, and Gauge-Invariant Approaches. Elements in the Foundations of Contemporary Physics, Cambridge University Press, 2023.
[21] Bertlmann, R.A.: Anomalies In Quantum Field Theory. International Series of Monographs on Physics, vol. 91, Oxford University Press, 1996., 1996. | MR
[22] Blagojević, M., Hehl, F.W., Kibble, T.W.B.: Gauge Theories of Gravitation. Imperial College Press, 2013.
[23] Blagojević, M., Hehland, F.W., Kibble, T.W.B.: Gauge Theories of Gravitation. Imperial College Press, 2013.
[24] Bonor, L.: Fermions and Anomalies in Quantum Field Theories. Theoretical and Mathematical Physics, Springer Cham, 1st ed., 2023. | MR
[25] Bonora, L., Cotta-Ramusino, P.: Some remark on BRS transformations, anomalies and the cohomology of the Lie algebra of the group of gauge transformations. Comm. Math. Phys. 87 (1983), 589–603. | DOI | MR
[26] Burdet, G., Duval, C., Perrin, M.: Cartan structures on galilean manifolds: The chronoprojective geometry. J. Math. Phys. 24 (7) (1983), 1752–1760. | DOI | MR
[27] Burdet, G., Duval, C., Perrin, M.: Chronoprojective Cartan Structures on four-dimensional manifolds. RIMS, Kyoto Univ. 19 (1983), 813–840. | DOI | MR
[28] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory. Mathematical Surveys and Monographs, vol. 1, American Mathematical Society, 2009. | DOI | MR | Zbl
[29] Čap, A., Slovák, J., Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures. I. Invariant differentiation. Acta Math. Univ. Comenian. 66 (1997), 33–69. | MR
[30] Čap, A., Slovák, J., Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures. II. Normal Cartan connections. Acta Math. Univ. Comenian. 66 (1997), 203–220. | MR
[31] Čap, A., Slovák, J., Souček, V.: Invariant operators on manifolds with almost hermitian symmetric structures,.III. Standard operators. Di erential Geom. Appl. 12 (1) (2000), 51–84. | DOI | MR
[32] Cartan, É.: Les espaces à connexion conforme. Ann. Polon. Math. 2 (1923), 171–221.
[33] Cartan, É.: Les récentes généralisations de la notion d’espace. Bull. Sci. Math. 48 (1924), 825–861.
[34] Cartan, É.: Sur les variétés à connexion projective. Bull. Soc. Math. France 52 (1924), 205–241. | DOI | MR
[35] Castellani, L.: A geometric interpretation of BRST symmetry. Classical Quantum Gravity 7 (1990), L159–164. | DOI | MR
[36] Castellani, L., Catenacci, R., Grassi, P.A.: Supergravity actions with integral forms. Nuclear Phys. B 889 (2014), 419–442. | DOI | MR
[37] Castellani, L., Catenacci, R., Grassi, P.A.: The geometry of supermanifolds and new supersymmetric actions. Nuclear Phys. B 899 (2015), 112–148. | MR
[38] Tullio Regge: An Eclectic Genius: From Quantum Gravity to Computer Play. vol. 9, World Scientific, 2019.
[39] Castellani, L., D’Auria, R., Fré, P.: Supergravity and superstrings: A Geometric perspective. vol. 1–3, Singapore: World Scientific, 1991. | MR
[40] Castellani, L., D’Auria, R., Fré, P.: Supergravity and superstrings: A Geometric perspective. Vol. 2: Supergravity. World Scientific Pub. Co. Inc., 1991. | MR
[41] Castellani, L., Grassi, P.A.: Hodge duality and supergravity. Phys. Rev. D 108 (4) (2023), 046018. | DOI | MR
[42] Catenacci, R., Debernardi, M., Grassi, P.A., Matessi, D.: Cech and de Rham cohomology of integral forms. J. Geom. Phys. 62 (2012), 890–902. | DOI | MR
[43] Catenacci, R., Pirola, G.P.: A geometrical description of local and global anomalies. Lett. Math. Phys. 19 (1990), 45–51. | DOI | MR
[44] Catenacci, R., Pirola, G.P., Martellini, M., Reina, C.: Group actions and anomalies in gauge theories. Phys. Lett. B 172 (1986), 223–226, | DOI | MR
[45] Chamseddine, A.H., West, P.C.: Supergravity as a Gauge theory of supersymmetry. Nuclear Phys. 129 (1977), 39–44. | DOI
[46] Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford Mathematical Monographs, Oxford University Press, 2009. | MR
[47] Coleman, S., Mandula, J.: All possible symmetries of the S matrix. Phys. Rev. 159 (1967), 1251–1256. | DOI
[48] Concha, P., Ravera, L., Rodríguez, E.: On the supersymmetry invariance of flat supergravity with boundary. JHEP 01 (2018), 192. | MR
[49] Connes, A.: Noncommutative Geometry Year 2000. Birkhäuser Basel, 2000, 481–559. | MR
[50] Connes, A., Marcolli, M.: An Invitation to Noncommutative Geometry. ch. A walk in the non-commutative garden, pp. 1–128, World Scientific Publishing Company, 2008. | MR
[51] Cotta Ramusino, P., Reina, C.: The action of the group of bundle-automorphisms on the space of connections and the geometry of gauge theories. J. Geom. Phys. 1 (3) (1984), 121–155. | DOI | MR
[52] Cremmer, E., Julia, B., Scherk, J.: Supergravity theory in 11 dimensions. Phys. Lett. B 76 (4) (1978), 409–412. | DOI | MR
[53] Cremonini, C.A.: The geometry of picture changing operators. accepted for publication in Adv. Theor. Math. Phys.; arXiv:2305.02828 [math-ph]. | MR
[54] Cremonini, C.A., Grassi, P.A.: Generalised cocycles and super p-branes. 6 2022. | MR
[55] Cremonini, C.A., Grassi, P.A.: Pictures from super Chern-Simons theory. JHEP 03 (2020), 043. | DOI | MR
[56] Cremonini, C.A., Grassi, P.A.: Super Chern-Simons theory: Batalin-Vilkovisky formalism and $A_\infty $ algebras. Phys. Rev. D 102 (2) (2020), 025009. | DOI | MR
[57] Cremonini, C.A., Grassi, P.A., Noris, R., Ravera, L.: Supergravities and branes from Hilbert-Poincaré series. JHEP 12 (2023), 088. | DOI | MR
[58] D’Auria, R.: Geometric supergravity. 5 2020.
[59] D’Auria, R., Fré, P.: Cartan integrable systems, that is differential free algebras, in supergravity. September School on Supergravity and Supersymmetry, vol. 9, 1982. | MR
[60] D’Auria, R., Fré, P.: Geometric supergravity in d = 11 and its hidden supergroup. Nuclear Phys. B 201 (1982), 101–140, [Erratum: Nucl.Phys.B 206, 496 (1982)]. | MR
[61] D’Auria, R., Ravera, L.: Conformal gravity with totally antisymmetric torsion. Phys. Rev. D 104 (8) (2021), 084034. | DOI | MR
[62] Quantum fields and strings: A course for mathematicians. Vol. 1, 2. Providence, RI: AMS, American Mathematical Society, 1999.
[63] DeWitt, B.: Supermanifolds. Cambridge University Press, 1984. | MR | Zbl
[64] Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative differential geometry and new models of Gauge theory. J. Math. Phys. 31 (2) (1990), 323–330. | DOI | MR
[65] Dubois-Violette, M., Kerner, R., Madore, J.: Noncommutative differential geometry of matrix algebras. J. Math. Phys. 31 (2) (1990), 316–322. | DOI | MR | Zbl
[66] Eastwood, M., Bailey, T.: Complex paraconformal manifolds – their differential geometry and twistor theory. Forum Math. 3 (1) (1991), 61–103. | MR
[67] Eder, K.: Super Cartan geometry and the super Ashtekar connection. Ann. Henri Poincaré 24 (2023), 3531–3599. | DOI | MR
[68] Eder, K., Huerta, J., Noja, S.: Poincaré Duality for Supermanifolds, Higher Cartan Structures and Geometric Supergravity. 12 2023.
[69] Egeileh, M., El Chami, F.: Some remarks on the geometry of superspace supergravity. J. Geom. Phys. 62 (1) (2012), 53–60. | DOI | MR
[70] Eguchi, T., Gilkey, P., Hanson, A.: Gravitation, gauge theories and differential geometry. Phys. Rep. 66 (6) (1980), 213–393. | DOI | MR
[71] Ehresmann, C.: Sur la théorie des espaces fibrés. Colloque de topologie algébrique du CNRS, Paris, 1947, pp. 3–15. | MR
[72] Ehresmann, C., Collectif, : Les connexions infinitésimales dans un espace fibré différentiable. Séminaire Bourbaki : années 1948/49 – 1949/50 – 1950/51, exposés 1–49, no. 1, Société mathématique de France, 1952, pp. 153–168. | MR
[73] Faddeev, L.D., Popov, V.N.: Feynman diagrams for the Yang-Mills field. Phys. Lett. B 25 (1) (1967), 29–30. | DOI
[74] Ferrara, S., Kaku, M., Townsend, P.K., van Nieuwenhuizen, P.: Gauging the graded conformal group with unitary internal symmetries. Nuclear Pkhys. B129 (1977), 125.
[75] Fine, D., Fine, A.: Gauge theory, anomalies and global geometry: The interplay of physics and mathematics. Stud. Hist. Philos. Modern Phys. 28 (1997), 307–323. | DOI | MR
[76] Fiorenza, D., Sati, H., Schreiber, U.: Super Lie n-algebra extensions, higher WZW models, and super p-branes with tensor multiplet fields. Int. J. Geom. Methods Mod. Phys. 12 (2014), 1550018. | DOI | MR
[77] Fiorenza, D., Sati, H., Schreiber, U.: The Rational higher structure of M-theory. Fortsch. Phys. 67 (8–9) (2019*), 1910017. | DOI | MR
[78] Fiorenza, D., Sati, H., Schreiber, U.: Super-exceptional geometry: origin of heterotic M-theory and super-exceptional embedding construction of M5. JHEP 02 (2020), 107. | DOI | MR
[79] François André, J.: The dressing field method for diffeomorphisms: a relational framework. 2023. | MR
[80] François, J.: Artificial versus substantial Gauge symmetries: A criterion and an application to the electroweak model. Philos. Sci. 86 (3) (2019), 472–496. | DOI | MR
[81] François, J.: Dilaton from tractor and matter field from twistor. J. High Energy Phys. 2019 (6) (2019), 18. | DOI | MR
[82] François, J.: Bundle geometry of the connection space, covariant hamiltonian formalism, the problem of boundaries in gauge theories, and the dressing field method. J. High Energy Phys. 2021 (3) (2021), 113 p. | MR
[83] François, J.: Differential geometry of Gauge theory: An introduction. PoS, Modave 2020 (2021), 002.
[84] François, J., Parrini, N., Boulanger, N.: Note on the bundle geometry of field space, variational connections, the dressing field method, & presymplectic structures of gauge theories over bounded regions. J. High Energy Phys. 2021 (12) (2021), 186. | MR
[85] Friedrich, H.: Twistor connection and normal conformal Cartan connection. Gen. Relativity Gravitation 8 (5) (1977), 303–312. | DOI | MR
[86] Galperin, A.S., Ivanov, E.A., Ogievetsky, V.I., Sokatchev, E.S.: Harmonic superspace. Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2007. | MR
[87] Giovanelli, M.: Nothing but coincidences: the point-coincidence and einstein’s struggle with the meaning of coordinates in physics. European J. Philos. Sci. 11 (2) (2021), 45. | DOI | MR
[88] Golfand, Y.A., Likhtman, E.P.: Extension of the algebra of Poincare group generators and violation of p invariance. JETP Lett. 13 (1971), 323–326. | MR
[89] Gover, R.: Aspects of parabolic invariant theory. Proceedings of the 18th Winter School “Geometry and Physics”, 1999, pp. 25–47. | MR
[90] Hamilton, M.: Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics. 1st ed., Universitext. Springer, 2018. | MR
[91] Hélein, F.: Gauge and gravity theories on a dynamical principal bundle. 10 2023.
[92] Hélein, F., Vey, D.: Curved space-times by crystallization of liquid fiber bundles. Found. Phys. 47 (1) (2017), 1–41. | DOI | MR
[93] Hersent, K., Mathieu, P., Wallet, J.C.: Gauge theories on quantum spaces. Phys. Rep. 1014 (2023), 1–83. | DOI | MR
[94] Jurčo, B., Sämann, C., Schreiber, U., Wolf, M.: Higher sructures in M-theory. Fortsch. Phys. 67 (8–9) (2019), 1910004. | MR
[95] Jurčo, B., Sämann, C., Wolf, M.: Semistrict higher Gauge theory. JHEP 2015 (4) (2015), 1–67. | MR
[96] Jurčo, B., Sämann, C., Wolf, M.: Higher groupoid bundles, higher spaces, and self-dual tensor field equations. Fortsch. Phys. 64 (8–9 (2016), 674–717. | DOI | MR
[97] Kaku, M., Townsend, P.K., van Nieuwenhuizen, P.: Gauge theory of the conformal and superconformal group. Phys. lett. 69B (1977), 304–308. | DOI | MR
[98] Kaku, M., Townsend, P.K., van Nieuwenhuizen, P.: Properties of conformal supergravity. Phys. Rev. D17 (1978), 3179. | MR
[99] Kasprzak, P.: On a certain approach to quantum homogeneous spaces. Comm. Math. Phys. 313 (1) (2012), 237–255. | DOI | MR
[100] Kastor, D.: Komar integrals in higher (and lower) derivative gravity. Classical Quantum Gravity 25 (17) (2008), 175007. | DOI | MR
[101] Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2 (2) (1961), 212–221. | DOI | MR
[102] Kim, H., Saemann, C.: Adjusted parallel transport for higher Gauge theories. J. Phys. A 53 (44) (2020), 445206. | DOI | MR
[103] Kobayashi, S.: On connections of Cartan. Canad. J. Math. 8 (1956), 145–156. | DOI | MR
[104] Kobayashi, S.: Theory of connections. Ann. Mat. Pura Appl. 43 (1) (1957), 119–194. | DOI | MR
[105] Kobayashi, S.: Canonical forms on frame bundles of higher order contact. Proc. Sympos. Pure Math. American Mathematical Society III (1961), 186–193. | MR
[106] Kobayashi, S.: Transformation Groups in Differential Geometry. Springer, 1972. | MR | Zbl
[107] Kobayashi, S., Nagano, T.: On projective connections. J. Math. Mech. 13 (1964), 215–235. | MR
[108] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. I, Wiley & Sons, 1963. | MR | Zbl
[109] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. vol. II, Wiley & Sons, 1969. | MR | Zbl
[110] Kolar, I., Michor, P., Slovak, J.: Natural Operations in Differential Geometry. Springer-Verlag Berlin, 1993. | MR
[111] Korzyński, M., Lewandowski, J.: The normal conformal Cartan connection and the Bach tensor. Classical Quantum Gravity 20 (16) (2003), 3745–3764. | DOI | MR
[112] Kostant, B.: Graded manifolds, graded Lie theory, and prequantization. Differ. geom. Meth. math. Phys., Proc. Symp. Bonn 1975, Lect. Notes Math., 1977. | MR
[113] Lazzarini, S., Tidei, C.: Polyakov soldering and second-order frames: The role of the cartan connection. Lett. Math. Phys. 85 (1) (2008), 27–37. | DOI | MR
[114] Leites, D.: Introduction to the theory of supermanifolds. Russian Math. Surveys 35 (1) (1980), 1–64. | DOI | MR | Zbl
[115] Marle, C.M.: The works of Charles Ehresmann on connections: from Cartan connections to connections on fibre bundles, in Geometry and Topology of Manifolds. vol. 76, Banach Center Publication, 2007. | MR
[116] McDowell, S.W., Mansouri, F.: Unified geometric theory of gravity and supergravity. Phys. Rev. Lett. 38 (1977), 739–742. | DOI | MR
[117] Merkulov, S.A.: A conformally invariant theory of gravitation and electromagnetism. Classical Quantum Gravity 1 (4) (1984), 349. | DOI | MR
[118] Merkulov, S.A.: The twistor connection and Gauge invariance principle. Comm. Math. Phys. 93 (3) (1984), 325–331. | DOI | MR
[119] Molotkov, V.: Infinite-dimensional and colored supermanifolds. J. Nonlinear Math. Phys. 17 (2021), 375–446. | DOI | MR
[120] Nakahara, M.: Geometry, Topology and Physics. 2nd Edition. Graduate Student Series in Physics, Taylor & Francis, 2003. | MR
[121] Ne’eman, Y., Regge, T.: Gravity and spergravity as Gauge theories on a group manifold. Riv. Nuovo Cim 1 (5) (1978), 1–43. | DOI | MR
[122] Ne’eman, Y., Regge, T.: Gravity and supergravity as Gauge theories on a group manifold. Phys. Lett. B 74 (1978), 54–56. | DOI
[123] Ó Buachalla, R.: Noncommutative complex structures on quantum homogeneous spaces. J. Geom. Phys. 99 (2016), 154–173. | DOI | MR
[124] Ochiai, T.: Geometry associated with semi-simple homogeneous spaces. Transactions of the American Mathematical Society 152 (1970), 159–193. | DOI | MR
[125] Ogiue, K.: Theory of conformal connections. Kodai Math. Sem. Rep. 19 (1967), 193–224. | DOI | MR
[126] O’Raifeartaigh, L.: The dawning of Gauge theory. Princeton Series in Physics, Princeton University Press, 1997. | MR
[127] Penrose, R.: The twistor program. Rep. Mathematical Phys 12 (1977), 65–76. | DOI | MR
[128] Penrose, R., MacCallum, M.A.H.: Twistor theory: An approach to the quantisation of fields and space-time. Phys. Rep. 6 (4) (1973), 241–316. | DOI | MR
[129] Penrose, R., Rindler, W.: Spinors and Space-Time. vol. 1, Cambridge University Press, 1984. | MR
[130] Penrose, R., Rindler, W.: Spinors and Space-Time. vol. 2, Cambridge University Press, 1986. | MR
[131] Ravera, L.: On the hidden symmetries of D=11 supergravity. Springer Proc. Math. Stat. 396 (2022), 211–222. | MR
[132] Ravera, L.: On the role of torsion and higher forms in off-shell supergravity. Fortsch. Phys. 71 (8–9) (2023), 2300036. | DOI | MR
[133] Rogers, A.: A global theory of supermanifolds. J. Math. Phys. 21 (6) (1980), 1352–1365. | DOI | MR | Zbl
[134] Rogers, A.: Supermanifolds. World Scientific Publishing Company, 2007. | MR
[135] Rovelli, C: Partial observables. Phys. Rev. D 65 (2002), 124013. | DOI | MR
[136] Rovelli, C.: Quantum gravity. Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2004. | MR
[137] Rovelli, C.: Why gauge?. Found. Phys. 44 (2014), 91–104.
[138] Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge University Press, 2014.
[139] Rüdiger, R., Penrose, R.: The Dirac equation and spinning particles in general relativity. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 377 (1771), 1981, pp. 417–424. | MR
[140] Sachse, C.: A categorical formulation of superalgebra and supergeometry. arXiv:0802.4067, 2008.
[141] Sachse, C., Wockel, C.: The diffeomorphism supergroup of a finite-dimensional supermanifold. Adv. Theor. Math. Phys. 15 (2) (2012), 285–323. | DOI | MR
[142] Salam, A., Strathdee, J.: Supersymmetry and superfields. Fortschr. Phys. 26 (2) (1978), 57–142. | DOI | MR
[143] Sati, H., Schreiber, U., Stasheff, J.: $L_{\infty }$ algebra connections and applications to String- and Chern-Simons n-transport. 2 2008. | MR
[144] Sauer, T.: Field equations in teleparallel space-time: Einstein’s fernparallelismus approach toward unified field theory. Historia Math. 33 (4) (2006), 399–439, Special Issue on Geometry and its Uses in Physics, 1900-1930. | DOI | MR
[145] Schmitt, T.: Supergeometry and quantum field theory, or: What is a classical configuration?. Rev. Math. Phys. 09(08) (1997), 993–1052. | DOI | MR
[146] Schneider, H.-J.: Principal homogeneous spaces for arbitrary hopf algebras. Israel J. Math. 72 (1) (1990), 167–195. | DOI | MR
[147] Schreiber, U.: Differential cohomology in a cohesive $\infty $-topos. arXiv:1310.7930 [math-ph].
[148] Sciama, D.W.: The physical structure of general relativity. Rev. Modern Phys. 36 (1964), 463–469. | DOI
[149] Sharpe, R.W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Graduate text in Mathematics, vol. 166, Springer, 1996. | MR
[150] Shvarts, A.S.: On the definition of superspace. Theoret. and Math. Phys. 60 91) (1984), 657–660. | DOI | MR | Zbl
[151] Singer, I.M.: Some remark on the Gribov ambiguity. Comm. Math. Phys. 60 (1978), 7–12. | DOI | MR
[152] Singer, I.M.: The geometry of the orbit space for non-abelian gauge theories. Physica Scripta 24 (5) (1981), 817–820. | DOI | MR
[153] Stachel, J.: The hole argument and some physical and philosophical implications. Living Reviews in Relativity 17 (1) (2014), 1. | DOI
[154] Steenrod, N.: The Topology of Fibre Bundles. (PMS–14). Princeton University Press, 1951. | MR
[155] Stelle, K.S., West, P.C.: de Sitter gauge invariance and the geometry of the Einstein-Cartan theory. J. Phys. A. 12 (1979), 205–210. | DOI | MR
[156] Stora, R.: Algebraic structure and topological origin of chiral anomalies. Progress in Gauge Field Theory, Cargese 1983, vol. 115, NATO ASI Ser.B,, Plenum Press, 1984. | MR
[157] Sullivan, D.: Infinitesimal computations in topology. Publ. Math. Inst. Hautes Études Sci. 47 (1977), 269–331. | DOI | MR
[158] Tamborino, J.: Relational observables in gravity: a review. SIGMA 8 (2012), 017. | MR
[159] Tanaka, N.: Projective connections and projective transformations. Nagoya Math. J. 12 (1957), 1–24. | DOI | MR
[160] Tyutin, L.V.: Gauge invariance in field theory and statistical physics in operator formalism. Lebedev preprint FIAN, 39:1975.
[161] Unzicker, A., Case, T.: Translation of Einstein’s Attempt of a Unified Field Theory with Teleparallelism. arXiv:physics/0503046 [physics.hist-ph], 2005.
[162] Utiyama, R.: Invariant Theoretical Interpretation of Interaction. Phys. Rev. 101 (1956), 1597–1607. | DOI | MR
[163] Volkov, D.V., Akulov, V.P.: Is the neutrino a goldstone particle?. Phys. Lett. B 46 (1) (1973), 109–110. | DOI
[164] Voronov, A.A.: Mappings of supermanifolds. Theoret. and Math. Phys. 60 (1) (1984), 660–664. | DOI | MR
[165] Wess, J., Zumino, B.: Supergauge transformations in four-dimensions. Nuclear Phys. 70 (1974), 39–50. | DOI | MR
[166] Wess, J., Zumino, B.: Superspace formulation of supergravity. Phys. Lett. B 66 (4) (1977), 361–364. | DOI | MR
[167] Weyl, H.: Gravitation and electricity. vol. 1918, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), 1918.
[168] Weyl., H.: A new extension of relativity theory. Ann. Physics 59 (1919), 101–133.
[169] Weyl, H.: Gravitation and the electron. Proceedings of the National Academy of Sciences, vol. 15 (4), 1929, pp. 323–334.
[170] Wise, D.K.: Topological Gauge Theory, Cartan Geometry, and Gravity. Ph.D. thesis, 2007. | MR
[171] Wise, D.K.: Symmetric space, cartan connections and gravity in three and four dimensions. SIGMA 5 (2009), 080–098. | MR
[172] Wise, D.K.: MacDowell–Mansouri gravity and Cartan geometry. Classical Quantum Gravity 27 (2010), 155010. | DOI | MR
[173] Wu, T.T., Yang, C.N.: Concept of nonintegrable phase factors and global formulation of Gauge fields. Phys. Rev. D 12 (1975), 3845–3857. | DOI | MR
[174] Yang, C.N.: Monopoles and fiber bundles. Subnuclear Series 14 (1978), 53–84.
[175] Yang, C.N., Mills, R.L.: Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96 (1954), 191–195. | DOI | MR
[176] Yates, R.G.: Fibre bundles and supersymmetries. Comm. Math. Phys. 76 (1980), 255–268. | DOI | MR
[177] Zardecki, A.: A formulation of supergravity based on Cartan’s connection. J. Math. Phys. 34 (1993), 1487–1496. | DOI | MR
[178] Zardecki, A.: Gravity as a Gauge theory with Cartan connection. J. Math. Phys. 29 (1998), 1661–1666. | DOI | MR
Cité par Sources :