Spin representations and binary numbers
Archivum mathematicum, Tome 60 (2024) no. 4, pp. 231-241 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a construction of the fundamental spin representations of the simple Lie algebras $\mathfrak{so}(n)$ in terms of binary arithmetic of fixed width integers. This gives the spin matrices as a Lie subalgebra of a $\mathbb{Z}$-graded associative algebra (rather than the usual $\mathbb{N}$-filtered Clifford algebra). Our description gives a quick way to write down the spin matrices, and gives a way to encode some extra structure, such as the real structure which is invariant under the compact real form, for some $n$. Additionally we can encode the spin representations combinatorially as (coloured) graphs.
We consider a construction of the fundamental spin representations of the simple Lie algebras $\mathfrak{so}(n)$ in terms of binary arithmetic of fixed width integers. This gives the spin matrices as a Lie subalgebra of a $\mathbb{Z}$-graded associative algebra (rather than the usual $\mathbb{N}$-filtered Clifford algebra). Our description gives a quick way to write down the spin matrices, and gives a way to encode some extra structure, such as the real structure which is invariant under the compact real form, for some $n$. Additionally we can encode the spin representations combinatorially as (coloured) graphs.
DOI : 10.5817/AM2024-4-231
Classification : 22E46
Keywords: spin group; fundamental representations; spin matrices; binary numbers
@article{10_5817_AM2024_4_231,
     author = {Winther, Henrik},
     title = {Spin representations and binary numbers},
     journal = {Archivum mathematicum},
     pages = {231--241},
     year = {2024},
     volume = {60},
     number = {4},
     doi = {10.5817/AM2024-4-231},
     mrnumber = {4833550},
     zbl = {07980752},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-4-231/}
}
TY  - JOUR
AU  - Winther, Henrik
TI  - Spin representations and binary numbers
JO  - Archivum mathematicum
PY  - 2024
SP  - 231
EP  - 241
VL  - 60
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-4-231/
DO  - 10.5817/AM2024-4-231
LA  - en
ID  - 10_5817_AM2024_4_231
ER  - 
%0 Journal Article
%A Winther, Henrik
%T Spin representations and binary numbers
%J Archivum mathematicum
%D 2024
%P 231-241
%V 60
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2024-4-231/
%R 10.5817/AM2024-4-231
%G en
%F 10_5817_AM2024_4_231
Winther, Henrik. Spin representations and binary numbers. Archivum mathematicum, Tome 60 (2024) no. 4, pp. 231-241. doi: 10.5817/AM2024-4-231

[1] Baum, H., Friedrich, Th., Grunewald, R., Kath, I.: Twistors and Killing spinors on Riemannian manifolds. Teubner Verlag Leipzig, Stuttgart, 1991. | MR | Zbl

Cité par Sources :