Keywords: non-integrable distribution; infinitesimal symmetry; solvable Lie group; snake robot
@article{10_5817_AM2024_4_221,
author = {Dole\v{z}al, Martin},
title = {Lie algebra structure in the model of 3-link snake robot},
journal = {Archivum mathematicum},
pages = {221--229},
year = {2024},
volume = {60},
number = {4},
doi = {10.5817/AM2024-4-221},
mrnumber = {4833549},
zbl = {07980751},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-4-221/}
}
Doležal, Martin. Lie algebra structure in the model of 3-link snake robot. Archivum mathematicum, Tome 60 (2024) no. 4, pp. 221-229. doi: 10.5817/AM2024-4-221
[1] Anderson, I., Kruglikov, B.: Rank 2 distributions of monge equations: symmetries, equivalences, extensions. Adv. Math. 228 (3) (2011), 1435–1465. | DOI | MR
[2] Cartan, É.: Les systèmes de pfaff, à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. Éc. Norm. Supér. (4) 27 (1910), 109–192. | DOI | MR
[3] Hrdina, J., Návrat, A., Vašík, P.: Control of 3-link robotic snake based on conformal geometric algebra. Adv. Appl. Clifford Algebr. 26 (2016), 1069–1080. | DOI | MR
[4] Montgomery, R.: A tour of subriemannian geometries, their geodesics and applications. Amer. Math. Soc., 2002. | MR | Zbl
[5] Olver, P.J.: Equivalence, Invariants and Symmetry. London Mathematical Society Lecture Note, Cambridge University Press, 1995. | MR | Zbl
[6] The, D.: Exceptionally simple PDE [Presentation]. Pure Math. Colloquium, University of Waterloo, Canada, 2018, January 5, 2018, available online (as of 2024-04-05): https://math.uit.no/ansatte/dennis/talks/ExcSimpPDE-Waterloo2018.pdf
Cité par Sources :