Keywords: Cartan connections; BGG machinery; tractor calculus; induced modules; Verma modules; semiholonomic jets
@article{10_5817_AM2024_4_191,
author = {Slov\'ak, Jan and Sou\v{c}ek, Vladim{\'\i}r},
title = {Semiholonomic jets and induced modules in {Cartan} geometry calculus},
journal = {Archivum mathematicum},
pages = {191--219},
year = {2024},
volume = {60},
number = {4},
doi = {10.5817/AM2024-4-191},
mrnumber = {4833548},
zbl = {07980750},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-4-191/}
}
TY - JOUR AU - Slovák, Jan AU - Souček, Vladimír TI - Semiholonomic jets and induced modules in Cartan geometry calculus JO - Archivum mathematicum PY - 2024 SP - 191 EP - 219 VL - 60 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-4-191/ DO - 10.5817/AM2024-4-191 LA - en ID - 10_5817_AM2024_4_191 ER -
Slovák, Jan; Souček, Vladimír. Semiholonomic jets and induced modules in Cartan geometry calculus. Archivum mathematicum, Tome 60 (2024) no. 4, pp. 191-219. doi: 10.5817/AM2024-4-191
[1] Bailey, T.N., Eastwood, M.G., Gover, A.R.: Thomas’s structure bundle for conformal, projective and related structures. Rocky Mountain J. 24 (1994), 1191–1217. | MR | Zbl
[2] Baston, R.J.: Verma modules and differential conformal invariants. J. Differential Geom. 32 (1990), 851–898. | DOI | MR | Zbl
[3] Boe, B.D., Collingwood, D.H.: A comparison theory for the structure of induced representations I. J. Algebra 94 (1985), 511–545. | DOI | MR
[4] Boe, D.D., Collingwood, D.H.: A comparison theory for the structure of induced representations II. Math. Z. 190 (1985), 1–11. | MR
[5] Borho, W., Jantzen, J.C.: Über primitive Ideale in der Einhüllenden einer halbeinfachen Lie-Algebra. Invent. Math., 39 (1977), 1–53. | DOI | MR
[6] Calderbank, D.M.J., Diemer, T.: Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. J. Reine Angew. Math. 537 (2001), 67–103. | MR | Zbl
[7] Čap, A., Gover, A.R.: Tractor calculi for parabolic geometries. Trans. Amer. Math. Soc. 354 (2002), 1511–1548. | DOI | MR
[8] Čap, A., Slovák, J.: Bundles of Weyl structures and invariant calculus for parabolic geometries. Contemp. Math., vol. 788, American Mathematical Society, 2003, pp. 53–72. | MR
[9] Čap, A., Slovák, J.: Parabolic geometries. I, Background and general theory. Mathematical Surveys and Monographs, vol. 154, Amer. Math. Soc., Providence, RI, 2009, pp. x+628. | MR
[10] Čap, A., Slovák, J., Souček, V.: Bernstein–Gelfand–Gelfand sequences. Ann. of Math. 154 (2001), 97–113. | DOI | MR
[11] Cartan, E.: Les espaces à connexion conforme. Ann. Soc. Pol. Math. 2 (1923), 171–202.
[12] Eastwood, M.G.: Variations on the de Rham complex. Notices Amer. Math. Soc. 46 (11) (1999), 1368–1376. | MR
[13] Eastwood, M.G., Rice, J.W.: Conformally invariant differential operators on Minkowski space and their curved analogues. Comm. Math. Phys. 109 (1987), 207–228. | MR | Zbl
[14] Eastwood, M.G., Rice, J.W.: Erratum: “Conformally invariant differential operators on Minkowski space and their curved analogues”. Comm. Math. Phys. 144 (1) (1992), 213. | MR
[15] Eastwood, M.G., Slovák, J.: Semi-holonomic Verma modules. J. Algebra 197 (1997), 424–448. | DOI | MR
[16] Enright, T., Shelton, B.: Categories of highest weight modules: Applications to classical Hermitian symmetric pairs. Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94 pp. | MR
[18] Graham, C.R., Jenne, R., Mason, J., Sparling, A.J.: Conformally invariant powers of the Laplacian, I: Existence. J. London Math. Soc. 46 (1992), 557–565. | DOI | MR | Zbl
[19] Kirillov, A.A.: Invariant operators over geometric quantitie. Current problems in mathematics, vol. 16, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1980, (Russian), VINITI, 3–29. | MR
[20] Kolář, I., Michor, P., Slovák, J.: Natural operations in differential geometry. Springer, 1993, 434 pp. | MR | Zbl
[21] Kostant, B.: Verma modules and the existence of quasi invariant differential operators. Non-Commutative Harmonic Analysis, vol. LNM 466, Springer, 1975, 101–128. | DOI | MR
[22] Lepowsky, J.: A generalization of the Bernstein–Gelfand–Gelfand resolution. J. Algebra 49 (1977), 496–511. | DOI | MR | Zbl
[23] Návrat, A.: A Grassmannian Analogue of Paneitz Operator. to appear.
[24] Návrat, A.: Non-standard Operators in Almost Grassmannian Geometry. Ph.D. thesis, University of Vienna, 2012, 120 pp.
[25] Sawon, J.: Homomorphisms of semiholonomic Verma modules: an exceptional case. Acta Math. Univ. Comenian. 68 (2) (1999), 257–269. | MR
[26] Sharpe, R.W.: Differential Geometry. Graduate Texts in Mathematics, vol. 166, Springer Verlag, 1997. | MR | Zbl
[27] Slovák, J., Souček, V.: Strongly invariant differential operators on parabolic geometries modelled on $Gr(3,3)$. preprint to appear.
[28] Slovák, J., Souček, V.: First order invariant differential operators for parabolic geometries. Seminaires & Congres. France, French Math. Soc, 2000, pp. 249–273.
[29] Slovák, J., Suchánek, R.: Notes on tractor calculi. Tutor. Sch. Workshops Math. Sci., Birkhäuser/Springer, Cham, 2021, pp. 31–72. | MR
[30] Tanaka, N.: On the equivalence problem associated with simple graded Lie algebras. Hokkaido Math. J. 8 (1979), 23–84. | DOI | MR
[31] Vogan, D.A.: Representation of Real Reductive Lie Groups. Progress in Mathematics, vol. 15, Birkhauser, Boston, Cambridge, MA, 1981. | MR
[32] Zierau, R.: Representations in Dolbeault Cohomology. Representation Theory of Lie Groups, vol. 8, American Math. Soc., J. Adams and D. Vogan ed., 2015, IAS/Park City Mathematics Series, pp. 89–146. | MR
[33] Zuckerman, G.: Tensor products of finite and infinite dimensional representations of semisimple Lie groups. Ann. of Math. 106 (1977), 295–308. | DOI | MR
Cité par Sources :