The canonical constructions of connections on total spaces of fibred manifolds
Archivum mathematicum, Tome 60 (2024) no. 3, pp. 163-175
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We classify classical linear connections $A(\Gamma ,\Lambda ,\Theta )$ on the total space $Y$ of a fibred manifold $Y\rightarrow M$ induced in a natural way by the following three objects: a general connection $\Gamma $ in $Y\rightarrow M$, a classical linear connection $\Lambda $ on $M$ and a linear connection $\Theta $ in the vertical bundle $VY\rightarrow Y$. The main result says that if $ \mathrm{dim}(M)\ge 3$ and $ \mathrm{dim}(Y)-\mathrm{dim}(M) \ge 3$ then the natural operators $A$ under consideration form the $17$ dimensional affine space.
We classify classical linear connections $A(\Gamma ,\Lambda ,\Theta )$ on the total space $Y$ of a fibred manifold $Y\rightarrow M$ induced in a natural way by the following three objects: a general connection $\Gamma $ in $Y\rightarrow M$, a classical linear connection $\Lambda $ on $M$ and a linear connection $\Theta $ in the vertical bundle $VY\rightarrow Y$. The main result says that if $ \mathrm{dim}(M)\ge 3$ and $ \mathrm{dim}(Y)-\mathrm{dim}(M) \ge 3$ then the natural operators $A$ under consideration form the $17$ dimensional affine space.
DOI :
10.5817/AM2024-3-163
Classification :
53C05, 58A32
Keywords: general connection; linear connection; natural operator
Keywords: general connection; linear connection; natural operator
@article{10_5817_AM2024_3_163,
author = {Mikulski, W{\l}odzimierz M.},
title = {The canonical constructions of connections on total spaces of fibred manifolds},
journal = {Archivum mathematicum},
pages = {163--175},
year = {2024},
volume = {60},
number = {3},
doi = {10.5817/AM2024-3-163},
mrnumber = {4805419},
zbl = {07893347},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-163/}
}
TY - JOUR AU - Mikulski, Włodzimierz M. TI - The canonical constructions of connections on total spaces of fibred manifolds JO - Archivum mathematicum PY - 2024 SP - 163 EP - 175 VL - 60 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-163/ DO - 10.5817/AM2024-3-163 LA - en ID - 10_5817_AM2024_3_163 ER -
Mikulski, Włodzimierz M. The canonical constructions of connections on total spaces of fibred manifolds. Archivum mathematicum, Tome 60 (2024) no. 3, pp. 163-175. doi: 10.5817/AM2024-3-163
[1] Gancarzewicz, J.: Horizontal lifts of linear connections to the natural vector bundles. Research Notes in Math., vol. 121, Pitman, 1985, pp. 318–341. | MR
[2] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Interscience Publishers New York London, 1963. | MR | Zbl
[3] Kolář, I.: Induced connections on total spaces of fibred bundles. Int. J. Geom. Methods Mod. Phys. 4 (2010), 705–711. | DOI | MR
[4] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. | MR
[5] Mikulski, W.M.: The induced connections on total spaces of fibered manifolds. Publ. Math. (Beograd) 97 (111) (2015), 149–160. | DOI | MR
Cité par Sources :