The canonical constructions of connections on total spaces of fibred manifolds
Archivum mathematicum, Tome 60 (2024) no. 3, pp. 163-175 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We classify classical linear connections $A(\Gamma ,\Lambda ,\Theta )$ on the total space $Y$ of a fibred manifold $Y\rightarrow M$ induced in a natural way by the following three objects: a general connection $\Gamma $ in $Y\rightarrow M$, a classical linear connection $\Lambda $ on $M$ and a linear connection $\Theta $ in the vertical bundle $VY\rightarrow Y$. The main result says that if $ \mathrm{dim}(M)\ge 3$ and $ \mathrm{dim}(Y)-\mathrm{dim}(M) \ge 3$ then the natural operators $A$ under consideration form the $17$ dimensional affine space.
We classify classical linear connections $A(\Gamma ,\Lambda ,\Theta )$ on the total space $Y$ of a fibred manifold $Y\rightarrow M$ induced in a natural way by the following three objects: a general connection $\Gamma $ in $Y\rightarrow M$, a classical linear connection $\Lambda $ on $M$ and a linear connection $\Theta $ in the vertical bundle $VY\rightarrow Y$. The main result says that if $ \mathrm{dim}(M)\ge 3$ and $ \mathrm{dim}(Y)-\mathrm{dim}(M) \ge 3$ then the natural operators $A$ under consideration form the $17$ dimensional affine space.
DOI : 10.5817/AM2024-3-163
Classification : 53C05, 58A32
Keywords: general connection; linear connection; natural operator
@article{10_5817_AM2024_3_163,
     author = {Mikulski, W{\l}odzimierz M.},
     title = {The canonical constructions of connections on total spaces of fibred manifolds},
     journal = {Archivum mathematicum},
     pages = {163--175},
     year = {2024},
     volume = {60},
     number = {3},
     doi = {10.5817/AM2024-3-163},
     mrnumber = {4805419},
     zbl = {07893347},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-163/}
}
TY  - JOUR
AU  - Mikulski, Włodzimierz M.
TI  - The canonical constructions of connections on total spaces of fibred manifolds
JO  - Archivum mathematicum
PY  - 2024
SP  - 163
EP  - 175
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-163/
DO  - 10.5817/AM2024-3-163
LA  - en
ID  - 10_5817_AM2024_3_163
ER  - 
%0 Journal Article
%A Mikulski, Włodzimierz M.
%T The canonical constructions of connections on total spaces of fibred manifolds
%J Archivum mathematicum
%D 2024
%P 163-175
%V 60
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-163/
%R 10.5817/AM2024-3-163
%G en
%F 10_5817_AM2024_3_163
Mikulski, Włodzimierz M. The canonical constructions of connections on total spaces of fibred manifolds. Archivum mathematicum, Tome 60 (2024) no. 3, pp. 163-175. doi: 10.5817/AM2024-3-163

[1] Gancarzewicz, J.: Horizontal lifts of linear connections to the natural vector bundles. Research Notes in Math., vol. 121, Pitman, 1985, pp. 318–341. | MR

[2] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Interscience Publishers New York London, 1963. | MR | Zbl

[3] Kolář, I.: Induced connections on total spaces of fibred bundles. Int. J. Geom. Methods Mod. Phys. 4 (2010), 705–711. | DOI | MR

[4] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. | MR

[5] Mikulski, W.M.: The induced connections on total spaces of fibered manifolds. Publ. Math. (Beograd) 97 (111) (2015), 149–160. | DOI | MR

Cité par Sources :