Packing of non-blocking four-dimensional cubes into the unit cube
Archivum mathematicum, Tome 60 (2024) no. 3, pp. 153-162 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Any collection of non-blocking four-dimensional cubes, whose total volume does not exceed 17/81, can be packed into the unit four-dimensional cube. This bound is tight for the parallel packing.
Any collection of non-blocking four-dimensional cubes, whose total volume does not exceed 17/81, can be packed into the unit four-dimensional cube. This bound is tight for the parallel packing.
DOI : 10.5817/AM2024-3-153
Classification : 52C17
Keywords: packing; cube
@article{10_5817_AM2024_3_153,
     author = {Januszewski, Janusz and Zielonka, {\L}ukasz},
     title = {Packing of non-blocking four-dimensional cubes into the unit cube},
     journal = {Archivum mathematicum},
     pages = {153--162},
     year = {2024},
     volume = {60},
     number = {3},
     doi = {10.5817/AM2024-3-153},
     mrnumber = {4805418},
     zbl = {07893346},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-153/}
}
TY  - JOUR
AU  - Januszewski, Janusz
AU  - Zielonka, Łukasz
TI  - Packing of non-blocking four-dimensional cubes into the unit cube
JO  - Archivum mathematicum
PY  - 2024
SP  - 153
EP  - 162
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-153/
DO  - 10.5817/AM2024-3-153
LA  - en
ID  - 10_5817_AM2024_3_153
ER  - 
%0 Journal Article
%A Januszewski, Janusz
%A Zielonka, Łukasz
%T Packing of non-blocking four-dimensional cubes into the unit cube
%J Archivum mathematicum
%D 2024
%P 153-162
%V 60
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-153/
%R 10.5817/AM2024-3-153
%G en
%F 10_5817_AM2024_3_153
Januszewski, Janusz; Zielonka, Łukasz. Packing of non-blocking four-dimensional cubes into the unit cube. Archivum mathematicum, Tome 60 (2024) no. 3, pp. 153-162. doi: 10.5817/AM2024-3-153

[1] Januszewski, J.: Packing rectangles into the unit square. Geom. Dedicata 8 (2000), 13–18. | DOI | MR

[2] Januszewski, J., Zielonka, Ł.: Packing a triangle by sequences of its non-blocking homothetic copies. Period. Math. Hung., accepted. | MR

[3] Januszewski, J., Zielonka, Ł.: Packing of non-blocking cubes into the unit cube. Beiträge Algebra Geom., | DOI | MR

[4] Januszewski, J., Zielonka, Ł.: Packing of non-blocking squares into the unit square. Colloq. Math., | DOI

[5] Januszewski, J., Zielonka, Ł.: Reserve in packing cubes into the unit cube. Bull. Pol. Acad. Sci. Math. 71 (2023), 85–95. | DOI | MR

[6] Meir, A., Moser, L.: On packing of squares and cubes. J. Combin. Theory 5 (1968), 126–134. | DOI | MR

[7] Moon, J.W., Moser, L.: Some packing and covering theorems. Colloq. Math. 17 (1967), 103–110. | DOI | MR | Zbl

Cité par Sources :