Complete solutions of a Lebesgue-Ramanujan-Nagell type equation
Archivum mathematicum, Tome 60 (2024) no. 3, pp. 135-144 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the Lebesgue-Ramanujan-Nagell type equation $x^2+5^a13^b17^c=2^m y^n$, where $a,b,c, m\ge 0, n \ge 3$ and $x, y\ge 1$ are unknown integers with $\gcd (x,y)=1$. We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all $S$-integral points on a class of elliptic curves.
We consider the Lebesgue-Ramanujan-Nagell type equation $x^2+5^a13^b17^c=2^m y^n$, where $a,b,c, m\ge 0, n \ge 3$ and $x, y\ge 1$ are unknown integers with $\gcd (x,y)=1$. We determine all integer solutions to the above equation. The proof depends on the classical results of Bilu, Hanrot and Voutier on primitive divisors in Lehmer sequences, and finding all $S$-integral points on a class of elliptic curves.
DOI : 10.5817/AM2024-3-135
Classification : 11D41, 11D61, 11Y50
Keywords: Diophantine equation; Lehmer sequence; elliptic curve; quartic curve; S-integral points
@article{10_5817_AM2024_3_135,
     author = {Baruah, Priyanka and Das, Anup and Hoque, Azizul},
     title = {Complete solutions of a {Lebesgue-Ramanujan-Nagell} type equation},
     journal = {Archivum mathematicum},
     pages = {135--144},
     year = {2024},
     volume = {60},
     number = {3},
     doi = {10.5817/AM2024-3-135},
     mrnumber = {4805416},
     zbl = {07893344},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-135/}
}
TY  - JOUR
AU  - Baruah, Priyanka
AU  - Das, Anup
AU  - Hoque, Azizul
TI  - Complete solutions of a Lebesgue-Ramanujan-Nagell type equation
JO  - Archivum mathematicum
PY  - 2024
SP  - 135
EP  - 144
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-135/
DO  - 10.5817/AM2024-3-135
LA  - en
ID  - 10_5817_AM2024_3_135
ER  - 
%0 Journal Article
%A Baruah, Priyanka
%A Das, Anup
%A Hoque, Azizul
%T Complete solutions of a Lebesgue-Ramanujan-Nagell type equation
%J Archivum mathematicum
%D 2024
%P 135-144
%V 60
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-135/
%R 10.5817/AM2024-3-135
%G en
%F 10_5817_AM2024_3_135
Baruah, Priyanka; Das, Anup; Hoque, Azizul. Complete solutions of a Lebesgue-Ramanujan-Nagell type equation. Archivum mathematicum, Tome 60 (2024) no. 3, pp. 135-144. doi: 10.5817/AM2024-3-135

[1] Abu Muriefah, F.S., Arif, S.A.: The Diophantine equation $x^2 + 5^{2k+1} = y^n$. Indian J. Pure Appl. Math. 30 (3) (1999), 229–231. | MR

[2] Abu Muriefah, F.S., Luca, F., Siksek, S., Tengely, S.: On the Diophantine equation $x^2 + C = 2y^n$. Int. J. Number Theory 5 (6) (2009), 1117–1128. | DOI | MR

[3] Abu Muriefah, F.S., Luca, F., Togbé, A.: On the Diophantine equation $x^2 + 5^a 13^b = y^n$. Glasgow Math. J. 50 (1) (2008), 175–181. | DOI | MR

[4] Alan, M., Zengin, U.: On the Diophantine equation $x^2 + 3^a41^b = y^n$. Period. Math. Hungar. 81 (2020), 284–291. | DOI | MR

[5] Arif, S.A., Al-Ali, A.S.: On the Diophantine equation $ax^2+b^m=4y^n$. Acta Arith. 103 (4) (2002), 343–346. | DOI | MR

[6] Bhatter, S., Hoque, A., Sharma, R.: On the solutions of a Lebesgue-Nagell type equation. Acta Math. Hungar. 158 (2019), 17–26. | DOI | MR

[7] Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math. 539 (2001), 75–122. | MR | Zbl

[8] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (3) (1997), 235–265. | DOI | MR | Zbl

[9] Bugeaud, Y.: On some exponential Diophantine equations. Monatsh. Math. 132 (2001), 93–97. | DOI | MR

[10] Chakraborty, K., Hoque, A.: On the Diophantine equation $dx^2+p^{2a}q^{2b}=4y^p$. Results Math. 77 (1) (2022), 11 pp., article no. 18. | MR

[11] Chakraborty, K., Hoque, A., Sharma, R.: Complete solutions of certain Lebesgue-Ramanujan-Nagell equations. Publ. Math. Debrecen 97 (3/4) (2020), 339–352. | DOI | MR

[12] Chakraborty, K., Hoque, A., Sharma, R.: On the solutions of certain Lebesgue-Ramanujan-Nagell equations. Rocky Mountain J. Math. 51 (2) (2021), 459–471. | DOI | MR

[13] Chakraborty, K., Hoque, A., Srinivas, K.: On the Diophantine equation $cx^2+p^{2m}=4y^n$. Results Math. 76 (2021), 12 pp., article no. 57. | DOI | MR

[14] Cohn, J.H.E.: Square Fibonacci numbers, etc. Fibonacci Quart. 2 (2) (1964), 109–113. | MR

[15] Dabrowski, A.: On the Lebesgue-Nagell equation. Colloq. Math. 125 (2) (2011), 245–253. | DOI | MR

[16] Dabrowski, A., Günhan, N., Soydan, G.: On a class of Lebesgue-Ljunggren-Nagell type equations. J. Number Theory 215 (2020), 149–159. | DOI | MR

[17] Demirci, M.: On the Diophantine equation $x^2 + 5^a p^b = y^n$. Filomat 31 (16) (2017), 5263–5269. | MR

[18] Gou, S., Wang, T.T.: The Diophantine equation $x^2 + 2^a.17^b = y^n$. Czechoslovak Math. J. 62 (2012), 645–654. | MR

[19] Hoque, A.: On a class of Lebesgue-Ramanujan-Nagell equation. Period. Math. Hungar. (2023), | DOI | MR

[20] Le, M., Soydan, G.: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation. Surv. Math. Appl. 15 (2020), 473–523. | MR

[21] Lebesgue, V.A.: Sur l’impossibilité, en nombres entiers, de l’équation $x^m =y^2+1$. Nouvelles Annales des Math. 9 (1850), 178 pp.

[22] Ljunggren, W.: On the Diophantine equation $Cx^2 + D = 2y^n$. Math. Scand. 18 (1966), 69–86. | DOI | MR

[23] Luca, F., Togbé, A.: On the equation $x^2 + 2^\alpha 13^\beta = y^n$. Colloq. Math. 116 (1) (2009), 139–146. | MR

[24] Pink, I., Rábai, Z.: On the Diophantine equation $x^2 + 5^k17^l = y^n$. Commun. Math. 19 (2011), 1–9. | MR

[25] Tao, L.: On the Diophantine equation $x^2 + 5^m = y^n$. Ramanujan J. 19 (2009), 325–338. | MR

[26] Yuan, P.: On the Diophantine equation $ax^2 + by^2 = ck^n$. Indag. Math. (N.S.) 16 (2) (2005), 301–320. | MR

[27] Zhu, H., Le, M., Soydan, G., Togbé, A.: On the exponential Diophantine equation $x +2^a p^b = y^n$. Period. Math. Hungar. 70 (2015), 233–247. | MR

Cité par Sources :