Keywords: vector bundle; sphere bundle over sphere; microbundle; homotopy equivalence; homeomorphism; surgery; characteristic class
@article{10_5817_AM2024_3_125,
author = {Raj, Ajay and Macko, Tibor},
title = {On manifolds homotopy equivalent to the total spaces of $S^7$-bundles over $S^8$},
journal = {Archivum mathematicum},
pages = {125--134},
year = {2024},
volume = {60},
number = {3},
doi = {10.5817/AM2024-3-125},
mrnumber = {4805415},
zbl = {07893343},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-125/}
}
TY - JOUR AU - Raj, Ajay AU - Macko, Tibor TI - On manifolds homotopy equivalent to the total spaces of $S^7$-bundles over $S^8$ JO - Archivum mathematicum PY - 2024 SP - 125 EP - 134 VL - 60 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-125/ DO - 10.5817/AM2024-3-125 LA - en ID - 10_5817_AM2024_3_125 ER -
%0 Journal Article %A Raj, Ajay %A Macko, Tibor %T On manifolds homotopy equivalent to the total spaces of $S^7$-bundles over $S^8$ %J Archivum mathematicum %D 2024 %P 125-134 %V 60 %N 3 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-125/ %R 10.5817/AM2024-3-125 %G en %F 10_5817_AM2024_3_125
Raj, Ajay; Macko, Tibor. On manifolds homotopy equivalent to the total spaces of $S^7$-bundles over $S^8$. Archivum mathematicum, Tome 60 (2024) no. 3, pp. 125-134. doi: 10.5817/AM2024-3-125
[1] Adams, J.F.: On the groups $J(X)$, $IV$. Topology 5 (1966), 21–71. | DOI | MR
[2] Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics, vol. 139, Springer-Verlag Inc., New York, 1993. | MR
[3] Chang, S., Weinberger, S.: A course on surgery theory. Annals of Mathematics Studies, vol. 211, Princeton University Press, 2021. | MR
[4] Crowley, D., Escher, C.M.: A classification of $S^3$-bundles over $S^4$. Differential Geom. Appl. 18 (3) (2003), 363–380. | DOI | MR
[5] Dold, A., Lashof, R.: Principal quasi-fibration and fibre homotopy equivalences of the bundles. Illinois J. Math. 3 (1959), 285–305. | DOI | MR
[6] Grey, M.: On the classification of total space of $S^7$-bundles over $S^8$. Master's thesis, Humboldt University, Berlin, 2012.
[7] Kirby, R.C., Siebenmann, L.C.: Foundational essays on topological manifolds, smoothings, and triangulations. Annals of Mathematics Studies, vol. 88, Princeton University Press, 1977. | MR
[8] Kitchloo, N., Shankar, K.: On complex equivalent to $S^3$-bundles over $S^4$. Int. Math. Res. Not. IMRN 2001 (8) (2001), 381–394. | DOI | MR
[9] Madsen, I.B., Milgram, R.J.: The Classifying Spaces For Surgery and Cobordism of Manifolds. Princeton University Press, New Jersey, 1979. | MR
[10] Milnor, J.: On manifolds homeomorphic to the $7$-sphere. Ann. of Math. (2) 64 (2) (1956), 399–405. | DOI | MR
[11] Ranicki, A.: Algebraic ${L}$-theory and topological manifolds. Cambridge University Press, 1992. | MR
[12] Ranicki, A.: On The Novikov Conjecture. Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 272–337. | MR
[13] Ranicki, A.: Algebraic and Geometric Surgery. Oxford Mathematical Monograph, Oxford Science Publication, 2002, ISBN 978-0198509240. | MR
[14] Shimada, N.: Differentiable structures on the $15$-sphere and Pontrjagin classes of certain manifolds. Nagoya Math. J. 12 (1957), 59–69. | DOI | MR | Zbl
[15] Tamura, I.: On Pontrjagin classes and homotopy types of the manifolds. J. Math. Soc. Japan 9 (2) (1957), 250–262. | DOI | MR
[16] Tamura, I.: Homeomorphic classification of total spaces of sphere bundles over spheres. J. Math. Soc. Japan 10 (1) (1958), 29–42. | DOI | MR
[17] Toda, H., Saito, Y., Yokota, I.: Notes on the generator of $\pi _{7}(SO(n))$. Mem. Coll. Sci. Univ. Kyoto 30 (1957), 227–230. | MR
[18] Wall, C.T.C.: Surgery on Compact Manifolds. Mathematical Surveys and Monographs, vol. 69, AMS, 1999. | MR
[19] Whitehead, G.W.: On products in homotopy groups. Ann. of Math. (2) 40 (3) (1946), 460–475. | DOI | MR
[20] Whitehead, G.W.: A generalization of the Hopf invariant. Ann. of Math. (2) 50 (1) (1950), 192–237. | DOI | MR
Cité par Sources :