On manifolds homotopy equivalent to the total spaces of $S^7$-bundles over $S^8$
Archivum mathematicum, Tome 60 (2024) no. 3, pp. 125-134 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We calculate the structure sets in the sense of surgery theory of total spaces of bundles over eight-dimensional sphere with fibre a seven-dimensional sphere, in which manifolds homotopy equivalent to the total spaces are organized, and we investigate the question, which of the elements in these structure sets can be realized as such bundles.
We calculate the structure sets in the sense of surgery theory of total spaces of bundles over eight-dimensional sphere with fibre a seven-dimensional sphere, in which manifolds homotopy equivalent to the total spaces are organized, and we investigate the question, which of the elements in these structure sets can be realized as such bundles.
DOI : 10.5817/AM2024-3-125
Classification : 19J25, 55R25, 55R40, 57N55
Keywords: vector bundle; sphere bundle over sphere; microbundle; homotopy equivalence; homeomorphism; surgery; characteristic class
@article{10_5817_AM2024_3_125,
     author = {Raj, Ajay and Macko, Tibor},
     title = {On manifolds homotopy equivalent to the total spaces of $S^7$-bundles over $S^8$},
     journal = {Archivum mathematicum},
     pages = {125--134},
     year = {2024},
     volume = {60},
     number = {3},
     doi = {10.5817/AM2024-3-125},
     mrnumber = {4805415},
     zbl = {07893343},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-125/}
}
TY  - JOUR
AU  - Raj, Ajay
AU  - Macko, Tibor
TI  - On manifolds homotopy equivalent to the total spaces of $S^7$-bundles over $S^8$
JO  - Archivum mathematicum
PY  - 2024
SP  - 125
EP  - 134
VL  - 60
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-125/
DO  - 10.5817/AM2024-3-125
LA  - en
ID  - 10_5817_AM2024_3_125
ER  - 
%0 Journal Article
%A Raj, Ajay
%A Macko, Tibor
%T On manifolds homotopy equivalent to the total spaces of $S^7$-bundles over $S^8$
%J Archivum mathematicum
%D 2024
%P 125-134
%V 60
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2024-3-125/
%R 10.5817/AM2024-3-125
%G en
%F 10_5817_AM2024_3_125
Raj, Ajay; Macko, Tibor. On manifolds homotopy equivalent to the total spaces of $S^7$-bundles over $S^8$. Archivum mathematicum, Tome 60 (2024) no. 3, pp. 125-134. doi: 10.5817/AM2024-3-125

[1] Adams, J.F.: On the groups $J(X)$, $IV$. Topology 5 (1966), 21–71. | DOI | MR

[2] Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics, vol. 139, Springer-Verlag Inc., New York, 1993. | MR

[3] Chang, S., Weinberger, S.: A course on surgery theory. Annals of Mathematics Studies, vol. 211, Princeton University Press, 2021. | MR

[4] Crowley, D., Escher, C.M.: A classification of $S^3$-bundles over $S^4$. Differential Geom. Appl. 18 (3) (2003), 363–380. | DOI | MR

[5] Dold, A., Lashof, R.: Principal quasi-fibration and fibre homotopy equivalences of the bundles. Illinois J. Math. 3 (1959), 285–305. | DOI | MR

[6] Grey, M.: On the classification of total space of $S^7$-bundles over $S^8$. Master's thesis, Humboldt University, Berlin, 2012.

[7] Kirby, R.C., Siebenmann, L.C.: Foundational essays on topological manifolds, smoothings, and triangulations. Annals of Mathematics Studies, vol. 88, Princeton University Press, 1977. | MR

[8] Kitchloo, N., Shankar, K.: On complex equivalent to $S^3$-bundles over $S^4$. Int. Math. Res. Not. IMRN 2001 (8) (2001), 381–394. | DOI | MR

[9] Madsen, I.B., Milgram, R.J.: The Classifying Spaces For Surgery and Cobordism of Manifolds. Princeton University Press, New Jersey, 1979. | MR

[10] Milnor, J.: On manifolds homeomorphic to the $7$-sphere. Ann. of Math. (2) 64 (2) (1956), 399–405. | DOI | MR

[11] Ranicki, A.: Algebraic ${L}$-theory and topological manifolds. Cambridge University Press, 1992. | MR

[12] Ranicki, A.: On The Novikov Conjecture. Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 272–337. | MR

[13] Ranicki, A.: Algebraic and Geometric Surgery. Oxford Mathematical Monograph, Oxford Science Publication, 2002, ISBN 978-0198509240. | MR

[14] Shimada, N.: Differentiable structures on the $15$-sphere and Pontrjagin classes of certain manifolds. Nagoya Math. J. 12 (1957), 59–69. | DOI | MR | Zbl

[15] Tamura, I.: On Pontrjagin classes and homotopy types of the manifolds. J. Math. Soc. Japan 9 (2) (1957), 250–262. | DOI | MR

[16] Tamura, I.: Homeomorphic classification of total spaces of sphere bundles over spheres. J. Math. Soc. Japan 10 (1) (1958), 29–42. | DOI | MR

[17] Toda, H., Saito, Y., Yokota, I.: Notes on the generator of $\pi _{7}(SO(n))$. Mem. Coll. Sci. Univ. Kyoto 30 (1957), 227–230. | MR

[18] Wall, C.T.C.: Surgery on Compact Manifolds. Mathematical Surveys and Monographs, vol. 69, AMS, 1999. | MR

[19] Whitehead, G.W.: On products in homotopy groups. Ann. of Math. (2) 40 (3) (1946), 460–475. | DOI | MR

[20] Whitehead, G.W.: A generalization of the Hopf invariant. Ann. of Math. (2) 50 (1) (1950), 192–237. | DOI | MR

Cité par Sources :