Keywords: complete metric space; path metric; intrinsic metric; gluing; convex; monoidal closed; enriched; tensored; locally presentable; colimit; internal hom
@article{10_5817_AM2024_2_61,
author = {Chirvasitu, Alexandru},
title = {Metric enrichment, finite generation, and the path coreflection},
journal = {Archivum mathematicum},
pages = {61--99},
year = {2024},
volume = {60},
number = {2},
doi = {10.5817/AM2024-2-61},
mrnumber = {4729650},
zbl = {07830506},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2024-2-61/}
}
Chirvasitu, Alexandru. Metric enrichment, finite generation, and the path coreflection. Archivum mathematicum, Tome 60 (2024) no. 2, pp. 61-99. doi: 10.5817/AM2024-2-61
[1] Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories: the joy of cats. Repr. Theory Appl. Categ. 17 (2006), 1–507, Reprint of the 1990 original [Wiley, New York; MR1051419]. | MR
[2] Adámek, J., Rosický, J.: Locally presentable and accessible categories. London Math. Soc. Lecture Note Ser., vol. 189, Cambridge University Press, Cambridge, 1994. | MR
[3] Adámek, J., Rosický, J.: Approximate injectivity and smallness in metric-enriched categories. J. Pure Appl. Algebra 226 (6) (2022), 30 pp., Paper No. 106974. | MR
[4] Awodey, S.: Category theory. second ed., Oxford Logic Guides, vol. 52, Oxford University Press, Oxford, 2010. | MR
[5] Blackadar, B.: Operator algebras. Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006. | MR
[6] Blumenthal, L.M.: Theory and applications of distance geometry. Chelsea Publishing Co., New York, 1970. | MR
[7] Bollobás, B.: Modern graph theory. Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998. | MR
[8] Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001. | MR | Zbl
[9] Chirvasitu, A., Ko, J.: Monadic forgetful functors and (non-)presentability for C$^*$- and W$^*$-algebras. , 2022. | arXiv | MR
[10] Di Liberti, I., Rosický, J.: Enriched locally generated categories. Theory Appl. Categ. 38 (2022), 661–683, Paper No. 17. | MR
[11] Diestel, R.: Graph theory. Grad. Texts in Math., vol. 173, Springer, Berlin, fifth ed., 2018. | MR
[12] Garbulińska-Wȩgrzyn, J., Kubiś, W.: A universal operator on the Gurariĭ space. J. Operator Theory 73 (1) (2015), 143–158. | DOI | MR
[13] Goebel, K., Kirk, W.A.: Topics in metric fixed point theory. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990. | MR | Zbl
[14] Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces. english ed., Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007, Based on the 1981 French original, With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates. | MR
[15] Halmos, P.R.: A Hilbert space problem book. Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, second ed., 1982. | MR
[16] Kelly, G.M.: Structures defined by finite limits in the enriched context, I. Cah. Topol. Géom. Dffér. Catég. 23 (1) (1982), 3–42, Third Colloquium on Categories, Part VI (Amiens, 1980. | MR
[17] Kelly, G.M.: Basic concepts of enriched category theory. Repr. Theory Appl. Categ., vol. 10, Cambridge Univ. Press, Cambridge, 2005, pp. vi+137. | MR | Zbl
[18] Khamsi, M.A., Kirk, W.A.: An introduction to metric spaces and fixed point theory. Pure Appl. Math. (N. Y.), Wiley-Interscience, New York, 2001. | MR
[19] Kubiś, W.: Metric-enriched categories and approximate Fraïssé limits. 2012, | arXiv | MR
[20] Lupini, M.: Fraïssé limits in functional analysis. Adv. Math. 338 (2018), 93–174. | DOI | MR
[21] Mac Lane, S.: Categories for the working mathematician. Grad. Texts in Math., Springer-Verlag, New York, second ed., 1998. | MR
[22] Menger, K.: Untersuchungen über allgemeine Metrik. Math. Ann. 100 (1) (1928), 75–163. | DOI | MR
[23] Munkres, J.R.: Topology. Prentice Hall, Inc., Upper Saddle River, NJ, 2000, Second edition of [MR0464128]. | MR
[24] Perdigão do Carmo, M.: Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992, Translated from the second Portuguese edition by Francis Flaherty. | MR
[25] Rosický, J., Tholen, W.: Approximate injectivity. Appl. Categ. Structures 26 (4) (2018), 699–716. | DOI | MR
[26] Wegge-Olsen, N.E.: $K$-theory and $C^*$-algebras. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993, A friendly approach. | MR
Cité par Sources :