Webster pseudo-torsion formulas of CR manifolds
Archivum mathematicum, Tome 59 (2023) no. 4, pp. 351-367
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this article, we obtain a formula for Webster pseudo-torsion for the link of an isolated singularity of a $n$-dimensional complex subvariety in $\mathbb{C}^{n+1}$ and we present an alternative proof of the Li-Luk formula for Webster pseudo-torsion for a real hypersurface in $\mathbb{C}^{n+1}$.
In this article, we obtain a formula for Webster pseudo-torsion for the link of an isolated singularity of a $n$-dimensional complex subvariety in $\mathbb{C}^{n+1}$ and we present an alternative proof of the Li-Luk formula for Webster pseudo-torsion for a real hypersurface in $\mathbb{C}^{n+1}$.
DOI :
10.5817/AM2023-4-351
Classification :
53A32
Keywords: pseudohermitian manifold; real hypersuface; Webster pseudo-torsion; CR geometry
Keywords: pseudohermitian manifold; real hypersuface; Webster pseudo-torsion; CR geometry
@article{10_5817_AM2023_4_351,
author = {Yin, Ho Chor},
title = {Webster pseudo-torsion formulas of {CR} manifolds},
journal = {Archivum mathematicum},
pages = {351--367},
year = {2023},
volume = {59},
number = {4},
doi = {10.5817/AM2023-4-351},
mrnumber = {4641951},
zbl = {07790552},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-351/}
}
Yin, Ho Chor. Webster pseudo-torsion formulas of CR manifolds. Archivum mathematicum, Tome 59 (2023) no. 4, pp. 351-367. doi: 10.5817/AM2023-4-351
[1] Chern, S.S., Moser, J.: Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219–271. | DOI | MR
[2] Kan, S.J.: The asymptotic expansion of a CR invariant and Grauert tubes. Math. Ann. 304 (1996), 63–92. | DOI | MR
[3] Li, S.Y., Luk, H.S.: An explicit formula for the Webster torsion of a pseudo-hermitian manifold and its application to torsion-free hypersurfaces. Sci. China Ser. A 49 (2006), 1662–1682. | DOI | MR
[4] Luk, H.S.:
[5] Tanaka, N.: A differential geometric study of strongly pseudoconvex $CR$ manifold. Kinokuniya Book-Store Co., 1975. | MR
[6] Webster, S.M.: Pseudohermitian structure on a real hypersurface. J. Differential Geom. 13 (1978), 265–270. | DOI | MR
Cité par Sources :