Webster pseudo-torsion formulas of CR manifolds
Archivum mathematicum, Tome 59 (2023) no. 4, pp. 351-367 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, we obtain a formula for Webster pseudo-torsion for the link of an isolated singularity of a $n$-dimensional complex subvariety in $\mathbb{C}^{n+1}$ and we present an alternative proof of the Li-Luk formula for Webster pseudo-torsion for a real hypersurface in $\mathbb{C}^{n+1}$.
In this article, we obtain a formula for Webster pseudo-torsion for the link of an isolated singularity of a $n$-dimensional complex subvariety in $\mathbb{C}^{n+1}$ and we present an alternative proof of the Li-Luk formula for Webster pseudo-torsion for a real hypersurface in $\mathbb{C}^{n+1}$.
DOI : 10.5817/AM2023-4-351
Classification : 53A32
Keywords: pseudohermitian manifold; real hypersuface; Webster pseudo-torsion; CR geometry
@article{10_5817_AM2023_4_351,
     author = {Yin, Ho Chor},
     title = {Webster pseudo-torsion formulas of {CR} manifolds},
     journal = {Archivum mathematicum},
     pages = {351--367},
     year = {2023},
     volume = {59},
     number = {4},
     doi = {10.5817/AM2023-4-351},
     mrnumber = {4641951},
     zbl = {07790552},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-351/}
}
TY  - JOUR
AU  - Yin, Ho Chor
TI  - Webster pseudo-torsion formulas of CR manifolds
JO  - Archivum mathematicum
PY  - 2023
SP  - 351
EP  - 367
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-351/
DO  - 10.5817/AM2023-4-351
LA  - en
ID  - 10_5817_AM2023_4_351
ER  - 
%0 Journal Article
%A Yin, Ho Chor
%T Webster pseudo-torsion formulas of CR manifolds
%J Archivum mathematicum
%D 2023
%P 351-367
%V 59
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-351/
%R 10.5817/AM2023-4-351
%G en
%F 10_5817_AM2023_4_351
Yin, Ho Chor. Webster pseudo-torsion formulas of CR manifolds. Archivum mathematicum, Tome 59 (2023) no. 4, pp. 351-367. doi: 10.5817/AM2023-4-351

[1] Chern, S.S., Moser, J.: Real hypersurfaces in complex manifolds. Acta Math. 133 (1974), 219–271. | DOI | MR

[2] Kan, S.J.: The asymptotic expansion of a CR invariant and Grauert tubes. Math. Ann. 304 (1996), 63–92. | DOI | MR

[3] Li, S.Y., Luk, H.S.: An explicit formula for the Webster torsion of a pseudo-hermitian manifold and its application to torsion-free hypersurfaces. Sci. China Ser. A 49 (2006), 1662–1682. | DOI | MR

[4] Luk, H.S.:

[5] Tanaka, N.: A differential geometric study of strongly pseudoconvex $CR$ manifold. Kinokuniya Book-Store Co., 1975. | MR

[6] Webster, S.M.: Pseudohermitian structure on a real hypersurface. J. Differential Geom. 13 (1978), 265–270. | DOI | MR

Cité par Sources :