Keywords: Bézier curve; rational Bézier curve; curve of genus 0; integral point
@article{10_5817_AM2023_4_339,
author = {Dospra, Petroula},
title = {Rational {B\'ezier} curves with infinitely many integral points},
journal = {Archivum mathematicum},
pages = {339--349},
year = {2023},
volume = {59},
number = {4},
doi = {10.5817/AM2023-4-339},
mrnumber = {4641950},
zbl = {07790551},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-339/}
}
Dospra, Petroula. Rational Bézier curves with infinitely many integral points. Archivum mathematicum, Tome 59 (2023) no. 4, pp. 339-349. doi: 10.5817/AM2023-4-339
[1] Farine, G.: Curves and Surfaces for CAGD. A Practical Guide. fifth ed., Academic Press, 2002.
[2] Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. AK Peters, 1993. | MR
[3] Mortenson, M.E.: Geometric Modelling. Industrial Press Inc., 2006. | MR
[4] Poulakis, D.: Affine curves with infinitely many integral points. Proc. Amer. Math. Soc. 131 (2) (2002), 1357–1359. | DOI | MR
[5] Poulakis, D., Voskos, E.: On the practical solution of genus zero Diophantine equations. J. Symbolic Comput. 30 (2000), 573–582. | DOI | MR
[6] Poulakis, D., Voskos, E.: Solving genus zero Diophantine equations with at most two infinite valuations. J. Symbolic Comput. 33 (2002), 479–491. | DOI | MR
[7] Ramanantoanina, A., Hormann, K.: New shape control tools for rational Bézier curve design. Comput. Aided Geom. Design 88 (2021), 11 pp., 102003. | DOI | MR
Cité par Sources :