Rational Bézier curves with infinitely many integral points
Archivum mathematicum, Tome 59 (2023) no. 4, pp. 339-349
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we consider rational Bézier curves with control points having rational coordinates and rational weights, and we give necessary and sufficient conditions for such a curve to have infinitely many points with integer coefficients. Furthermore, we give algorithms for the construction of these curves and the computation of theirs points with integer coefficients.
DOI :
10.5817/AM2023-4-339
Classification :
14H25, 14H45, 14H50, 14Q05, 65D17
Keywords: Bézier curve; rational Bézier curve; curve of genus 0; integral point
Keywords: Bézier curve; rational Bézier curve; curve of genus 0; integral point
@article{10_5817_AM2023_4_339,
author = {Dospra, Petroula},
title = {Rational {B\'ezier} curves with infinitely many integral points},
journal = {Archivum mathematicum},
pages = {339--349},
publisher = {mathdoc},
volume = {59},
number = {4},
year = {2023},
doi = {10.5817/AM2023-4-339},
mrnumber = {4641950},
zbl = {07790551},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-339/}
}
TY - JOUR AU - Dospra, Petroula TI - Rational Bézier curves with infinitely many integral points JO - Archivum mathematicum PY - 2023 SP - 339 EP - 349 VL - 59 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-339/ DO - 10.5817/AM2023-4-339 LA - en ID - 10_5817_AM2023_4_339 ER -
Dospra, Petroula. Rational Bézier curves with infinitely many integral points. Archivum mathematicum, Tome 59 (2023) no. 4, pp. 339-349. doi: 10.5817/AM2023-4-339
Cité par Sources :