Padovan and Perrin numbers as products of two generalized Lucas numbers
Archivum mathematicum, Tome 59 (2023) no. 4, pp. 315-337.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $P_m$ and $E_m$ be the $m$-th Padovan and Perrin numbers respectively. Let $r, s$ be non-zero integers with $r\ge 1$ and $s\in \lbrace -1, 1\rbrace $, let $\lbrace U_n\rbrace _{n\ge 0}$ be the generalized Lucas sequence given by $U_{n+2}=rU_{n+1} + sU_n$, with $U_0=0$ and $U_1=1.$ In this paper, we give effective bounds for the solutions of the following Diophantine equations \[ P_m=U_nU_k\quad \text{and}\quad E_m=U_nU_k\,, \] where $m$, $ n$ and $k$ are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.
DOI : 10.5817/AM2023-4-315
Classification : 11B39, 11J86
Keywords: generalized Lucas numbers; linear forms in logarithms; reduction method
@article{10_5817_AM2023_4_315,
     author = {Ad\'edji, Kou\`essi Norbert and Odjoumani, Japhet and Togb\'e, Alain},
     title = {Padovan and {Perrin} numbers as products of two generalized {Lucas} numbers},
     journal = {Archivum mathematicum},
     pages = {315--337},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2023},
     doi = {10.5817/AM2023-4-315},
     mrnumber = {4641949},
     zbl = {07790550},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-315/}
}
TY  - JOUR
AU  - Adédji, Kouèssi Norbert
AU  - Odjoumani, Japhet
AU  - Togbé, Alain
TI  - Padovan and Perrin numbers as products of two generalized Lucas numbers
JO  - Archivum mathematicum
PY  - 2023
SP  - 315
EP  - 337
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-315/
DO  - 10.5817/AM2023-4-315
LA  - en
ID  - 10_5817_AM2023_4_315
ER  - 
%0 Journal Article
%A Adédji, Kouèssi Norbert
%A Odjoumani, Japhet
%A Togbé, Alain
%T Padovan and Perrin numbers as products of two generalized Lucas numbers
%J Archivum mathematicum
%D 2023
%P 315-337
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-315/
%R 10.5817/AM2023-4-315
%G en
%F 10_5817_AM2023_4_315
Adédji, Kouèssi Norbert; Odjoumani, Japhet; Togbé, Alain. Padovan and Perrin numbers as products of two generalized Lucas numbers. Archivum mathematicum, Tome 59 (2023) no. 4, pp. 315-337. doi : 10.5817/AM2023-4-315. http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-315/

Cité par Sources :