Keywords: generalized Lucas numbers; linear forms in logarithms; reduction method
@article{10_5817_AM2023_4_315,
author = {Ad\'edji, Kou\`essi Norbert and Odjoumani, Japhet and Togb\'e, Alain},
title = {Padovan and {Perrin} numbers as products of two generalized {Lucas} numbers},
journal = {Archivum mathematicum},
pages = {315--337},
year = {2023},
volume = {59},
number = {4},
doi = {10.5817/AM2023-4-315},
mrnumber = {4641949},
zbl = {07790550},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-315/}
}
TY - JOUR AU - Adédji, Kouèssi Norbert AU - Odjoumani, Japhet AU - Togbé, Alain TI - Padovan and Perrin numbers as products of two generalized Lucas numbers JO - Archivum mathematicum PY - 2023 SP - 315 EP - 337 VL - 59 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-315/ DO - 10.5817/AM2023-4-315 LA - en ID - 10_5817_AM2023_4_315 ER -
%0 Journal Article %A Adédji, Kouèssi Norbert %A Odjoumani, Japhet %A Togbé, Alain %T Padovan and Perrin numbers as products of two generalized Lucas numbers %J Archivum mathematicum %D 2023 %P 315-337 %V 59 %N 4 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-315/ %R 10.5817/AM2023-4-315 %G en %F 10_5817_AM2023_4_315
Adédji, Kouèssi Norbert; Odjoumani, Japhet; Togbé, Alain. Padovan and Perrin numbers as products of two generalized Lucas numbers. Archivum mathematicum, Tome 59 (2023) no. 4, pp. 315-337. doi: 10.5817/AM2023-4-315
[1] Baker, A., Davenport, H.: The equations $3x^2-2 = y^2$ and $8x^2-7 = z^2$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. | MR
[2] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers. Ann. of Math. (2) 163 (2006), 969–1018. | MR
[3] Ddamulira, M.: Padovan numbers that are concatenations of two distinct repdigits. Math. Slovaca 71 (2021), 275–284. | DOI | MR
[4] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2) 49 (1998), 291–306. | MR
[5] Guzmán, S., Luca, F.: Linear combinations of factorials and $s$-units in a binary recurrence sequence. Ann. Math. Qué. 38 (2014), 169–188. | MR
[6] Kiss, P.: On common terms of linear recurrences. Acta Math. Acad. Sci. Hungar. 40 (1–2) (1982), 119–123. | DOI | MR
[7] Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in then logarithms of algebraic numbers II. Izv. Math. 64 (2000), 1217–1269. | DOI | MR
[8] Mignotte, M.: Intersection des images de certaines suites récurrentes linéaires. Theoret. Comput. Sci. 7.1 (1978), 117–121. | DOI | MR | Zbl
[9] Ribenboim, P.: My numbers, my friends. Popular Lectures on Number Theory. Springer-Verlag, Berlin, Heidelberg, 2000. | MR
[10] Schlickewei, H.P., Schmidt, W.M.: The intersection of recurrence sequences. Acta Arith. 72.1 (1995), 1–4. | DOI | MR | Zbl
Cité par Sources :