Padovan and Perrin numbers as products of two generalized Lucas numbers
Archivum mathematicum, Tome 59 (2023) no. 4, pp. 315-337
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $P_m$ and $E_m$ be the $m$-th Padovan and Perrin numbers respectively. Let $r, s$ be non-zero integers with $r\ge 1$ and $s\in \lbrace -1, 1\rbrace $, let $\lbrace U_n\rbrace _{n\ge 0}$ be the generalized Lucas sequence given by $U_{n+2}=rU_{n+1} + sU_n$, with $U_0=0$ and $U_1=1.$ In this paper, we give effective bounds for the solutions of the following Diophantine equations \[ P_m=U_nU_k\quad \text{and}\quad E_m=U_nU_k\,, \] where $m$, $ n$ and $k$ are non-negative integers. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell and balancing sequences.
DOI :
10.5817/AM2023-4-315
Classification :
11B39, 11J86
Keywords: generalized Lucas numbers; linear forms in logarithms; reduction method
Keywords: generalized Lucas numbers; linear forms in logarithms; reduction method
@article{10_5817_AM2023_4_315,
author = {Ad\'edji, Kou\`essi Norbert and Odjoumani, Japhet and Togb\'e, Alain},
title = {Padovan and {Perrin} numbers as products of two generalized {Lucas} numbers},
journal = {Archivum mathematicum},
pages = {315--337},
publisher = {mathdoc},
volume = {59},
number = {4},
year = {2023},
doi = {10.5817/AM2023-4-315},
mrnumber = {4641949},
zbl = {07790550},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-315/}
}
TY - JOUR AU - Adédji, Kouèssi Norbert AU - Odjoumani, Japhet AU - Togbé, Alain TI - Padovan and Perrin numbers as products of two generalized Lucas numbers JO - Archivum mathematicum PY - 2023 SP - 315 EP - 337 VL - 59 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-315/ DO - 10.5817/AM2023-4-315 LA - en ID - 10_5817_AM2023_4_315 ER -
%0 Journal Article %A Adédji, Kouèssi Norbert %A Odjoumani, Japhet %A Togbé, Alain %T Padovan and Perrin numbers as products of two generalized Lucas numbers %J Archivum mathematicum %D 2023 %P 315-337 %V 59 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-315/ %R 10.5817/AM2023-4-315 %G en %F 10_5817_AM2023_4_315
Adédji, Kouèssi Norbert; Odjoumani, Japhet; Togbé, Alain. Padovan and Perrin numbers as products of two generalized Lucas numbers. Archivum mathematicum, Tome 59 (2023) no. 4, pp. 315-337. doi: 10.5817/AM2023-4-315
Cité par Sources :