Generalization of the $S$-Noetherian concept
Archivum mathematicum, Tome 59 (2023) no. 4, pp. 307-314 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A$ be a commutative ring and ${\mathcal{S}}$ a multiplicative system of ideals. We say that $A$ is ${\mathcal{S}}$-Noetherian, if for each ideal $Q$ of $A$, there exist $I\in {\mathcal{S}}$ and a finitely generated ideal $F\subseteq Q$ such that $IQ\subseteq F$. In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.
Let $A$ be a commutative ring and ${\mathcal{S}}$ a multiplicative system of ideals. We say that $A$ is ${\mathcal{S}}$-Noetherian, if for each ideal $Q$ of $A$, there exist $I\in {\mathcal{S}}$ and a finitely generated ideal $F\subseteq Q$ such that $IQ\subseteq F$. In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.
DOI : 10.5817/AM2023-4-307
Classification : 13A15, 13B25, 13E05
Keywords: ${\mathcal{S}}$-Noetherian; Nagata’s idealization; multiplicative system of ideals
@article{10_5817_AM2023_4_307,
     author = {Dabbabi, Abdelamir and Benhissi, Ali},
     title = {Generalization of the $S${-Noetherian} concept},
     journal = {Archivum mathematicum},
     pages = {307--314},
     year = {2023},
     volume = {59},
     number = {4},
     doi = {10.5817/AM2023-4-307},
     mrnumber = {4641948},
     zbl = {07790549},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-307/}
}
TY  - JOUR
AU  - Dabbabi, Abdelamir
AU  - Benhissi, Ali
TI  - Generalization of the $S$-Noetherian concept
JO  - Archivum mathematicum
PY  - 2023
SP  - 307
EP  - 314
VL  - 59
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-307/
DO  - 10.5817/AM2023-4-307
LA  - en
ID  - 10_5817_AM2023_4_307
ER  - 
%0 Journal Article
%A Dabbabi, Abdelamir
%A Benhissi, Ali
%T Generalization of the $S$-Noetherian concept
%J Archivum mathematicum
%D 2023
%P 307-314
%V 59
%N 4
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-307/
%R 10.5817/AM2023-4-307
%G en
%F 10_5817_AM2023_4_307
Dabbabi, Abdelamir; Benhissi, Ali. Generalization of the $S$-Noetherian concept. Archivum mathematicum, Tome 59 (2023) no. 4, pp. 307-314. doi: 10.5817/AM2023-4-307

[1] Anderson, D.D., Dumitrescu, T.: S-Noetherian rings. Comm. Algebra 30 (9) (2002), 4407–4416. | DOI | MR

[2] Anderson, D.D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3–53. | DOI | MR

[3] Hamann, E., Houston, E., Johnson, J.: Properties of uppers to zero in $R[X]$. Pacific J. Math. 135 (1988), 65–79. | DOI | MR

[4] Hamed, A., Hizem, S.: S-Noetherian rings of the form ${\mathcal{A}}[X]$ and ${\mathcal{A}}[[X]]$. Comm. Algebra 43 (2015), 3848–3856. | MR

[5] Huckaba, J.A.: Commutative rings with zero divizors. Pure Appl. Math., Marcel Dekker, 1988. | MR

[6] Lim, J.W., Oh, D.Y.: S-Noetherian properties on amalgamated algebras along an ideal. J. Pure Appl. Algebra 218 (2014), 1075–1080. | DOI | MR

Cité par Sources :