Generalization of the $S$-Noetherian concept
Archivum mathematicum, Tome 59 (2023) no. 4, pp. 307-314
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $A$ be a commutative ring and ${\mathcal{S}}$ a multiplicative system of ideals. We say that $A$ is ${\mathcal{S}}$-Noetherian, if for each ideal $Q$ of $A$, there exist $I\in {\mathcal{S}}$ and a finitely generated ideal $F\subseteq Q$ such that $IQ\subseteq F$. In this paper, we study the transfer of this property to the polynomial ring and Nagata’s idealization.
DOI :
10.5817/AM2023-4-307
Classification :
13A15, 13B25, 13E05
Keywords: ${\mathcal{S}}$-Noetherian; Nagata’s idealization; multiplicative system of ideals
Keywords: ${\mathcal{S}}$-Noetherian; Nagata’s idealization; multiplicative system of ideals
@article{10_5817_AM2023_4_307,
author = {Dabbabi, Abdelamir and Benhissi, Ali},
title = {Generalization of the $S${-Noetherian} concept},
journal = {Archivum mathematicum},
pages = {307--314},
publisher = {mathdoc},
volume = {59},
number = {4},
year = {2023},
doi = {10.5817/AM2023-4-307},
mrnumber = {4641948},
zbl = {07790549},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-307/}
}
TY - JOUR AU - Dabbabi, Abdelamir AU - Benhissi, Ali TI - Generalization of the $S$-Noetherian concept JO - Archivum mathematicum PY - 2023 SP - 307 EP - 314 VL - 59 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-307/ DO - 10.5817/AM2023-4-307 LA - en ID - 10_5817_AM2023_4_307 ER -
Dabbabi, Abdelamir; Benhissi, Ali. Generalization of the $S$-Noetherian concept. Archivum mathematicum, Tome 59 (2023) no. 4, pp. 307-314. doi: 10.5817/AM2023-4-307
Cité par Sources :