Keywords: ${\mathcal{S}}$-Noetherian; Nagata’s idealization; multiplicative system of ideals
@article{10_5817_AM2023_4_307,
author = {Dabbabi, Abdelamir and Benhissi, Ali},
title = {Generalization of the $S${-Noetherian} concept},
journal = {Archivum mathematicum},
pages = {307--314},
year = {2023},
volume = {59},
number = {4},
doi = {10.5817/AM2023-4-307},
mrnumber = {4641948},
zbl = {07790549},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-307/}
}
TY - JOUR AU - Dabbabi, Abdelamir AU - Benhissi, Ali TI - Generalization of the $S$-Noetherian concept JO - Archivum mathematicum PY - 2023 SP - 307 EP - 314 VL - 59 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-4-307/ DO - 10.5817/AM2023-4-307 LA - en ID - 10_5817_AM2023_4_307 ER -
Dabbabi, Abdelamir; Benhissi, Ali. Generalization of the $S$-Noetherian concept. Archivum mathematicum, Tome 59 (2023) no. 4, pp. 307-314. doi: 10.5817/AM2023-4-307
[1] Anderson, D.D., Dumitrescu, T.: S-Noetherian rings. Comm. Algebra 30 (9) (2002), 4407–4416. | DOI | MR
[2] Anderson, D.D., Winders, M.: Idealization of a module. J. Commut. Algebra 1 (2009), 3–53. | DOI | MR
[3] Hamann, E., Houston, E., Johnson, J.: Properties of uppers to zero in $R[X]$. Pacific J. Math. 135 (1988), 65–79. | DOI | MR
[4] Hamed, A., Hizem, S.: S-Noetherian rings of the form ${\mathcal{A}}[X]$ and ${\mathcal{A}}[[X]]$. Comm. Algebra 43 (2015), 3848–3856. | MR
[5] Huckaba, J.A.: Commutative rings with zero divizors. Pure Appl. Math., Marcel Dekker, 1988. | MR
[6] Lim, J.W., Oh, D.Y.: S-Noetherian properties on amalgamated algebras along an ideal. J. Pure Appl. Algebra 218 (2014), 1075–1080. | DOI | MR
Cité par Sources :