Keywords: computational mechanics; quasi-brittle fracture; nonlocal elasticity; smeared damage; extended finite element method
@article{10_5817_AM2023_3_295,
author = {Vala, Ji\v{r}{\'\i}},
title = {Numerical approaches to~the modelling of~quasi-brittle crack propagation},
journal = {Archivum mathematicum},
pages = {295--303},
year = {2023},
volume = {59},
number = {3},
doi = {10.5817/AM2023-3-295},
mrnumber = {4563041},
zbl = {07675599},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-295/}
}
TY - JOUR AU - Vala, Jiří TI - Numerical approaches to the modelling of quasi-brittle crack propagation JO - Archivum mathematicum PY - 2023 SP - 295 EP - 303 VL - 59 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-295/ DO - 10.5817/AM2023-3-295 LA - en ID - 10_5817_AM2023_3_295 ER -
Vala, Jiří. Numerical approaches to the modelling of quasi-brittle crack propagation. Archivum mathematicum, Tome 59 (2023) no. 3, pp. 295-303. doi: 10.5817/AM2023-3-295
[1] Altan, S.: Existence in nonlocal elasticity. Arch. Mech. 47 (1989), 25–36.
[2] Bažant, Z.P.: Why continuum damage is nonlocal: micromechanics arguments. J. Eng. Mech. 117 (1991), 1070–1089.
[3] Bermúdez de Castro, A.: Continuum Thermomechanics. Birkhäuser, Basel, 2005. | MR
[4] Bybordiani, M., Dias da Costa, D.: A consistent finite element approach for dynamic crack propagation with explicit time integration. Comput. Methods Appl. Mech. Eng. 376 (2021), 1–32, 113652. | DOI | MR
[5] de Vree, J.H.P., Brekelmans, W.A.M., van Gils, M.A.J.: Comparison of nonlocal approaches in continuum damage mechanics. Comput. Struct. 55 (1995), 581–588. | DOI
[6] Drábek, P., Milota, I.: Methods of Nonlinear Analysis. Birkhäuser, Basel, 2013. | MR
[7] Eringen, A.C.: Theory of Nonlocal Elasticity and Some Applications. Tech. report, Princeton University, Princeton, 1984.
[8] Evgrafov, A., Bellido, J.-C.: From nonlocal Eringen’s model to fractional elasticity. Math. Mech. Solids 24 (2019), 1935–1953. | DOI | MR
[9] Fasshauer, G.E., Ye, Q.: Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators. Numer. Math. 119 (2011), 585–611. | DOI | MR
[10] Fries, T.P., Belytschko, T.: The intrinsic XFEM: a method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Methods Eng. 68 (2006), 1358–1385. | DOI
[11] Giry, C., Dufour, F., Mazars, J.: Stress-based nonlocal damage model. Int. J. Solids Struct. 48 (2011), 3431–3443. | DOI
[12] Hashiguchi, K.: Elastoplasticity Theory. Springer Berlin, 2014. | MR
[13] Havlásek, P., Grassl, P., Jirásek, M.: Analysis of size effect on strength of quasi-brittle materials using integral-type nonlocal models. Eng. Fract. Mech. 157 (2016), 72–85. | DOI
[14] Ju, J.W.: Isotropic and anisotropic damage variables in continuum damage. J. Eng. Mech. 116 (1990), 2764–2770.
[15] Kamińska, I., Szwed, A.: A thermodynamically consistent model of quasibrittle elastic damaged materials based on a novel Helmholtz potential and dissipation function. MDPI Materials 14 (2021), 1–30, 6323.
[16] Kozák, V., Chlup, Z., Padělek, P., Dlouhá, I.: Prediction of the traction separation law of ceramics using iterative finite element modelling. Solid State Phenomena 258 (2017), 186–189. | DOI
[17] Li, H., Li, J., Yuan, H.: A review of the extended finite element method on macrocrack and microcrack growth simulations. Theor. Appl. Fract. Mech. 97 (2018), 236–249. | DOI
[18] Mariani, S., Perego, U.: Extended finite element method for quasi-brittle fracture. Int. J. Numer. Meth. Engn. 58 (2003), 103–126. | DOI | MR
[19] Mielke, A., Roubíček, T.: Rate-Independent Systems. Springer, New York, 2015. | MR
[20] Mousavi, S.M.: Dislocation-based fracture mechanics within nonlocal and gradient elasticity of bi-Helmholtz type. Int. J. Solids Struct. 87 (2016), 92–93, 105–120. | DOI
[21] Peerlings, R.H.J., R.de Borst, , Brekelmans, W.A.M., Geers, M.: Gradient enhanced damage modelling of concrete fracture. Int. J. Numer. Anal. Methods Geomech. 3 (1998), 323–342.
[22] Pijaudier-Cabot, G., Mazars, J.: Damage models for concrete. Handbook of Materials Behavior Models (Lemaitre, J., ed.), Academic Press, Cambridge (Massachusetts, USA), 2001, pp. 500–512.
[23] Pike, M.G., Oskay, C.: XFEM modeling of short microfiber reinforced composites with cohesive interfaces. Finite Elem. Anal. Des. 106 (2015), 16–31. | DOI
[24] Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2005. | MR
[25] Skala, V.: A practical use of radial basis functions interpolation and approximation. Investigación Operacional 37 (2016), 137–144. | MR
[26] Štekbauer, H., Němec, I., Lang, R., Burkart, D., ValaSte22, J.: On a new computational algorithm for impacts of elastic bodies. Appl. Math. 67 (2022), 28 pp., in print. | DOI | MR
[27] Sumi, Y.: Mathematical and Computational Analyses of Cracking Formation. Springer, Tokyo, 2014. | MR
[28] Sun, Y., Edwards, M.G., Chen, B., Li, C.: A state-of-the-art review of crack branching. Eng. Fract. Mech. 257 (2021), 1–33, 108036.
[29] Szabó, B., Babuška, I.: Finite Element Analysis: Method, Verification and Validation. J. Wiley & Sons, Hoboken, 2021. | MR
[30] Turner, M.J., Clough, R.W., Martin, H.C., Top, L.J.: Stiffness and deflection analysis of complex structures. Journal of the Aeronautical Sciences 23 (1956), 805–823.
[31] Vala, J.: On a computational smeared damage approach to the analysis of strength of quasi-brittle materials. WSEAS Trans. Appl. Theor. Mech. 16 (2021), 283–292. | DOI
[32] Vala, J., Kozák, V.: Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites. Theor. Appl. Fract. Mech.. 107 (2020), 1–8, 102486. | DOI
[33] Vala, J., Kozák, V.: Nonlocal damage modelling of quasi-brittle composites. Appl. Math. 66 (2021), 701–721. | DOI | MR
[34] Vala, J., Kozák, V., Jedlička, M.: Scale bridging in computational modelling of quasi-brittle fracture of cementitious composites. Solid State Phenomena 325 (2021), 56–64. | DOI
[35] Vilppo, J., Kouhia, R., Hartikainen, J., Kolari, K., Fedoroff, A., Calonius, K.: Anisotropic damage model for concrete and other quasi-brittle materials. Int. J. Solids Struct. 225 (2021), 1–13, 111048. | DOI
[36] Zlámal, M.: On the finite element method. Numer. Math. 12 (1968), 394–409. | DOI
Cité par Sources :