Numerical approaches to the modelling of quasi-brittle crack propagation
Archivum mathematicum, Tome 59 (2023) no. 3, pp. 295-303.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Computational analysis of quasi-brittle fracture in cement-based and similar composites, supplied by various types of rod, fibre, etc. reinforcement, is crucial for the prediction of their load bearing ability and durability, but rather difficult because of the risk of initiation of zones of microscopic defects, followed by formation and propagation of a large number of macroscopic cracks. A reasonable and complete deterministic description of relevant physical processes is rarely available. Thus, due to significance of such materials in the design and construction of buildings, semi-heuristic computational models must be taken into consideration. These models generate mathematical problems, whose solvability is not transparent frequently, which limits the credibility of all results of ad hoc designed numerical simulations. In this short paper such phenomena are demonstrated on a simple model problem, covering both micro- and macro-cracking, with references to needful generalizations and more realistic computational settings.
DOI : 10.5817/AM2023-3-295
Classification : 65M20, 65M60, 74A40, 74A45, 74H15
Keywords: computational mechanics; quasi-brittle fracture; nonlocal elasticity; smeared damage; extended finite element method
@article{10_5817_AM2023_3_295,
     author = {Vala, Ji\v{r}{\'\i}},
     title = {Numerical approaches to~the modelling of~quasi-brittle crack propagation},
     journal = {Archivum mathematicum},
     pages = {295--303},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {2023},
     doi = {10.5817/AM2023-3-295},
     mrnumber = {4563041},
     zbl = {07675599},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-295/}
}
TY  - JOUR
AU  - Vala, Jiří
TI  - Numerical approaches to the modelling of quasi-brittle crack propagation
JO  - Archivum mathematicum
PY  - 2023
SP  - 295
EP  - 303
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-295/
DO  - 10.5817/AM2023-3-295
LA  - en
ID  - 10_5817_AM2023_3_295
ER  - 
%0 Journal Article
%A Vala, Jiří
%T Numerical approaches to the modelling of quasi-brittle crack propagation
%J Archivum mathematicum
%D 2023
%P 295-303
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-295/
%R 10.5817/AM2023-3-295
%G en
%F 10_5817_AM2023_3_295
Vala, Jiří. Numerical approaches to the modelling of quasi-brittle crack propagation. Archivum mathematicum, Tome 59 (2023) no. 3, pp. 295-303. doi : 10.5817/AM2023-3-295. http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-295/

Cité par Sources :