On Euler methods for Caputo fractional differential equations
Archivum mathematicum, Tome 59 (2023) no. 3, pp. 287-294 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Numerical methods for fractional differential equations have specific properties with respect to the ones for ordinary differential equations. The paper discusses Euler methods for Caputo differential equation initial value problem. The common properties of the methods are stated and demonstrated by several numerical experiments. Python codes are available to researchers for numerical simulations.
Numerical methods for fractional differential equations have specific properties with respect to the ones for ordinary differential equations. The paper discusses Euler methods for Caputo differential equation initial value problem. The common properties of the methods are stated and demonstrated by several numerical experiments. Python codes are available to researchers for numerical simulations.
DOI : 10.5817/AM2023-3-287
Classification : 26A33, 34A08, 65L05
Keywords: Caputo derivative; numerical methods; initial value problem
@article{10_5817_AM2023_3_287,
     author = {Tom\'a\v{s}ek, Petr},
     title = {On {Euler} methods for {Caputo} fractional differential equations},
     journal = {Archivum mathematicum},
     pages = {287--294},
     year = {2023},
     volume = {59},
     number = {3},
     doi = {10.5817/AM2023-3-287},
     mrnumber = {4563040},
     zbl = {07675598},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-287/}
}
TY  - JOUR
AU  - Tomášek, Petr
TI  - On Euler methods for Caputo fractional differential equations
JO  - Archivum mathematicum
PY  - 2023
SP  - 287
EP  - 294
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-287/
DO  - 10.5817/AM2023-3-287
LA  - en
ID  - 10_5817_AM2023_3_287
ER  - 
%0 Journal Article
%A Tomášek, Petr
%T On Euler methods for Caputo fractional differential equations
%J Archivum mathematicum
%D 2023
%P 287-294
%V 59
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-287/
%R 10.5817/AM2023-3-287
%G en
%F 10_5817_AM2023_3_287
Tomášek, Petr. On Euler methods for Caputo fractional differential equations. Archivum mathematicum, Tome 59 (2023) no. 3, pp. 287-294. doi: 10.5817/AM2023-3-287

[1] Diethelm, K.: The analysis of fractional differential equations. Springer, Heidelberg, 2010. | MR

[2] Diethelm, K.: An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. Appl. Anal. 84 (3) (2011), 475–490. | DOI | MR

[3] Diethelm, K., Kiryakova, V., Luchko, Y., Machado, J.A.T., Tarasov, V.E.: Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 107 (2022), 3245–3270.

[4] Garrappa, R.: Numerical solution of fractional differential equations: A survey and software tutorial. Mathematics 2018 (6) (2018), 1–23. | MR

[5] Garrappa, R.: Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 70 (2019), 302–306. | DOI | MR

[6] Li, C.P., Zeng, F.H.: Numerical methods for fractional calculus. Chapman & Hall/CRC, Boca Raton, FL, 2015. | MR

[7] Podlubny, I.: Fractional differential equations. Academic Press, San Diego, CA, 1999.

[8] Rosu, F.: Parallel algorithm for numerical methods applied to fractional-order system. Parallel algorithm for numerical methods applied to fractional-order system 21 (4) (2020), 701–707.

Cité par Sources :