Keywords: Caputo derivative; numerical methods; initial value problem
@article{10_5817_AM2023_3_287,
author = {Tom\'a\v{s}ek, Petr},
title = {On {Euler} methods for {Caputo} fractional differential equations},
journal = {Archivum mathematicum},
pages = {287--294},
year = {2023},
volume = {59},
number = {3},
doi = {10.5817/AM2023-3-287},
mrnumber = {4563040},
zbl = {07675598},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-287/}
}
Tomášek, Petr. On Euler methods for Caputo fractional differential equations. Archivum mathematicum, Tome 59 (2023) no. 3, pp. 287-294. doi: 10.5817/AM2023-3-287
[1] Diethelm, K.: The analysis of fractional differential equations. Springer, Heidelberg, 2010. | MR
[2] Diethelm, K.: An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. Appl. Anal. 84 (3) (2011), 475–490. | DOI | MR
[3] Diethelm, K., Kiryakova, V., Luchko, Y., Machado, J.A.T., Tarasov, V.E.: Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 107 (2022), 3245–3270.
[4] Garrappa, R.: Numerical solution of fractional differential equations: A survey and software tutorial. Mathematics 2018 (6) (2018), 1–23. | MR
[5] Garrappa, R.: Neglecting nonlocality leads to unreliable numerical methods for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 70 (2019), 302–306. | DOI | MR
[6] Li, C.P., Zeng, F.H.: Numerical methods for fractional calculus. Chapman & Hall/CRC, Boca Raton, FL, 2015. | MR
[7] Podlubny, I.: Fractional differential equations. Academic Press, San Diego, CA, 1999.
[8] Rosu, F.: Parallel algorithm for numerical methods applied to fractional-order system. Parallel algorithm for numerical methods applied to fractional-order system 21 (4) (2020), 701–707.
Cité par Sources :