An unconditionally stable finite element scheme for anisotropic curve shortening flow
Archivum mathematicum, Tome 59 (2023) no. 3, pp. 263-274 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse a fully discrete numerical method of this geometric evolution equation. The method uses piecewise linear finite elements in space and a backward Euler approximation in time. We establish existence and uniqueness of a discrete solution, as well as an unconditional stability property. Some numerical computations confirm the theoretical results and demonstrate the practicality of our method.
Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse a fully discrete numerical method of this geometric evolution equation. The method uses piecewise linear finite elements in space and a backward Euler approximation in time. We establish existence and uniqueness of a discrete solution, as well as an unconditional stability property. Some numerical computations confirm the theoretical results and demonstrate the practicality of our method.
DOI : 10.5817/AM2023-3-263
Classification : 35K15, 53E10, 65M12, 65M60
Keywords: anisotropic curve shortening flow; finite element method; stability
@article{10_5817_AM2023_3_263,
     author = {Deckelnick, Klaus and N\"urnberg, Robert},
     title = {An unconditionally stable finite element scheme for anisotropic curve shortening flow},
     journal = {Archivum mathematicum},
     pages = {263--274},
     year = {2023},
     volume = {59},
     number = {3},
     doi = {10.5817/AM2023-3-263},
     mrnumber = {4563038},
     zbl = {07675596},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-263/}
}
TY  - JOUR
AU  - Deckelnick, Klaus
AU  - Nürnberg, Robert
TI  - An unconditionally stable finite element scheme for anisotropic curve shortening flow
JO  - Archivum mathematicum
PY  - 2023
SP  - 263
EP  - 274
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-263/
DO  - 10.5817/AM2023-3-263
LA  - en
ID  - 10_5817_AM2023_3_263
ER  - 
%0 Journal Article
%A Deckelnick, Klaus
%A Nürnberg, Robert
%T An unconditionally stable finite element scheme for anisotropic curve shortening flow
%J Archivum mathematicum
%D 2023
%P 263-274
%V 59
%N 3
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-263/
%R 10.5817/AM2023-3-263
%G en
%F 10_5817_AM2023_3_263
Deckelnick, Klaus; Nürnberg, Robert. An unconditionally stable finite element scheme for anisotropic curve shortening flow. Archivum mathematicum, Tome 59 (2023) no. 3, pp. 263-274. doi: 10.5817/AM2023-3-263

[1] Alfaro, M., Garcke, H., Hilhorst, D., Matano, H., Schätzle, R.: Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen-Cahn equation. Proc. Roy. Soc. Edinburgh Sect. A 140 (4) (2010), 673–706. | MR

[2] Barrett, J.W., Blowey, J.F.: Finite element approximation of a model for phase separation of a multi-component alloy with non-smooth free energy. Numer. Math. 77 (1) (1997), 1–34. | DOI

[3] Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of anisotropic geometric evolution equations in the plane. IMA J. Numer. Anal. 28 (2) (2008), 292–330. | DOI | MR

[4] Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of gradient flows for closed curves in ${\mathbb{R}}^d$. IMA J. Numer. Anal. 30 (1) (2010), 4–60. | DOI | MR

[5] Barrett, J.W., Garcke, H., Nürnberg, R.: The approximation of planar curve evolutions by stable fully implicit finite element schemes that equidistribute. Numer. Methods Partial Differential Equations 27 (1) (2011), 1–30. | DOI | MR

[6] Barrett, J.W., Garcke, H., Nürnberg, R.: Stable phase field approximations of anisotropic solidification. IMA J. Numer. Anal. 34 (4) (2014), 1289–1327. | DOI | MR

[7] Barrett, J.W., Garcke, H., Nürnberg, R.: Numerical approximation of curve evolutions in Riemannian manifolds. IMA J. Numer. Anal. 40 (3) (2020), 1601–1651. | DOI | MR

[8] Barrett, J.W., Garcke, H., Nürnberg, R.: Parametric finite element approximations of curvature driven interface evolutions. Handb. Numer. Anal. (Bonito, A., Nochetto, R.H., eds.), vol. 21, Elsevier, Amsterdam, 2020, pp. 275–423. | MR

[9] Bellettini, G.: Anisotropic and crystalline mean curvature flow. A sampler of Riemann-Finsler geometry, Math. Sci. Res. Inst. Publ., vol. 50, Cambridge Univ. Press, 2004, pp. 49–82. | MR

[10] Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25 (3) (1996), 537–566. | DOI | Zbl

[11] Beneš, M., Mikula, K.: Simulation of anisotropic motion by mean curvature-comparison of phase field and sharp interface approaches. Acta Math. Univ. Comenian. (N.S.) 67 (1) (1998), 17–42.

[12] Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22 (1) (1997), 61–79. | DOI

[13] Clarenz, U., Dziuk, G., Rumpf, M.: On generalized mean curvature flow in surface processing. Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, 2003, pp. 217–248. | MR

[14] Deckelnick, K., Dziuk, G.: On the approximation of the curve shortening flow. Calculus of Variations, Applications and Computations (Pont-à-Mousson, 1994) (Bandle, C., Bemelmans, J., Chipot, M., Paulin, J.S.J., Shafrir, I., eds.), Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 1995, pp. 100–108.

[15] Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005), 139–232. | DOI | MR | Zbl

[16] Deckelnick, K., Nürnberg, R.: A novel finite element approximation of anisotropic curve shortening flow. arXiv:2110.04605 (2021).

[17] Deimling, K.: Nonlinear functional analysis. Springer-Verlag, Berlin, 1985.

[18] Dziuk, G.: Convergence of a semi-discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci. 4 (4) (1994), 589–606. | DOI

[19] Dziuk, G.: Discrete anisotropic curve shortening flow. SIAM J. Numer. Anal. 36 (6) (1999), 1808–1830. | DOI | Zbl

[20] Ecker, K.: Regularity Theory for Mean Curvature Flow. Birkhäuser, Boston, 2004. | MR | Zbl

[21] Elliott, C.M., Fritz, H.: On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick. IMA J. Numer. Anal. 37 (2) (2017), 543–603. | MR

[22] Elliott, C.M., Stuart, A.M.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30 (6) (1993), 1622–1663. | DOI

[23] Garcke, H., Lam, K.F., Nürnberg, R., Signori, A.: Overhang penalization in additive manufacturing via phase field structural topology optimization with anisotropic energies. arXiv:2111.14070 (2021).

[24] Giga, Y.: Surface evolution equations. vol. 99, Birkhäuser, Basel, 2006. | MR

[25] Gurtin, M.E.: Thermomechanics of Evolving Phase Boundaries in the Plane. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993. | Zbl

[26] Haußer, F., Voigt, A.: A numerical scheme for regularized anisotropic curve shortening flow. Appl. Math. Lett. 19 (8) (2006), 691–698. | DOI | MR

[27] Mantegazza, C.: Lecture notes on mean curvature flow. Progress in Mathematics, vol. 290, Birkhäuser/Springer Basel AG, Basel, 2011. | MR

[28] Mikula, K., Ševčovič, D.: Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math. 61 (5) (2001), 1473–1501. | DOI | MR

[29] Mikula, K., Ševčovič, D.: A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. Math. Methods Appl. Sci. 27 (13) (2004), 1545–1565. | DOI | MR

[30] Mikula, K., Ševčovič, D.: Computational and qualitative aspects of evolution of curves driven by curvature and external force. Computing Vis. Sci. 6 (4) (2004), 21–225. | DOI | MR

[31] Pozzi, P.: Anisotropic curve shortening flow in higher codimension. Math. Methods Appl. Sci. 30 (11) (2007), 1243–1281. | DOI | MR

[32] Taylor, J.E., Cahn, J.W., Handwerker, C.A.: Geometric models of crystal growth. Acta Metall. Mater. 40 (7) (1992), 1443–1474. | DOI

[33] Wu, C., Tai, X.: A level set formulation of geodesic curvature flow on simplicial surfaces. IEEE Trans. Vis. Comput. Graph. 16 (4) (2010), 647–662. | DOI

Cité par Sources :