Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_5817_AM2023_3_249, author = {Carini, Laura and Jensen, Max and N\"urnberg, Robert}, title = {Deep learning for gradient flows using the {Brezis{\textendash}Ekeland} principle}, journal = {Archivum mathematicum}, pages = {249--261}, publisher = {mathdoc}, volume = {59}, number = {3}, year = {2023}, doi = {10.5817/AM2023-3-249}, mrnumber = {4563037}, zbl = {07675595}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-249/} }
TY - JOUR AU - Carini, Laura AU - Jensen, Max AU - Nürnberg, Robert TI - Deep learning for gradient flows using the Brezis–Ekeland principle JO - Archivum mathematicum PY - 2023 SP - 249 EP - 261 VL - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-249/ DO - 10.5817/AM2023-3-249 LA - en ID - 10_5817_AM2023_3_249 ER -
%0 Journal Article %A Carini, Laura %A Jensen, Max %A Nürnberg, Robert %T Deep learning for gradient flows using the Brezis–Ekeland principle %J Archivum mathematicum %D 2023 %P 249-261 %V 59 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-249/ %R 10.5817/AM2023-3-249 %G en %F 10_5817_AM2023_3_249
Carini, Laura; Jensen, Max; Nürnberg, Robert. Deep learning for gradient flows using the Brezis–Ekeland principle. Archivum mathematicum, Tome 59 (2023) no. 3, pp. 249-261. doi : 10.5817/AM2023-3-249. http://geodesic.mathdoc.fr/articles/10.5817/AM2023-3-249/
Cité par Sources :