Keywords: Oberbeck-Boussinesq approximation; singular limit; low Mach number; unbounded domain; compressible Navier-Stokes-Fourier system; weak solutions; no-slip boundary condition
@article{10_5817_AM2023_2_231,
author = {Wr\'oblewska-Kami\'nska, Aneta},
title = {Stability with respect to domain of the low {Mach} number limit of compressible heat-conducting viscous fluid},
journal = {Archivum mathematicum},
pages = {231--243},
year = {2023},
volume = {59},
number = {2},
doi = {10.5817/AM2023-2-231},
mrnumber = {4563035},
zbl = {07675593},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-231/}
}
TY - JOUR AU - Wróblewska-Kamińska, Aneta TI - Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid JO - Archivum mathematicum PY - 2023 SP - 231 EP - 243 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-231/ DO - 10.5817/AM2023-2-231 LA - en ID - 10_5817_AM2023_2_231 ER -
%0 Journal Article %A Wróblewska-Kamińska, Aneta %T Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid %J Archivum mathematicum %D 2023 %P 231-243 %V 59 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-231/ %R 10.5817/AM2023-2-231 %G en %F 10_5817_AM2023_2_231
Wróblewska-Kamińska, Aneta. Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 231-243. doi: 10.5817/AM2023-2-231
[1] Arrieta, J.M., Krejčiřík, D.: Geometric versus spectral convergence for the Neumann Laplacian under exterior perturbation of the domain. Integral Methods in Sciences and Engineering 1 (2010), 9–19. | MR
[2] Bucur, D., Feireisl, E., Nečasová, Š., Wolf, J.: On the asymptotic limit of the Navier-Stokes system in domains with rough boundaries. J. Differential Equations 244 (2008), 2890–2908. | DOI | MR
[3] Feireisl, E.: Incompressible limits and propagation of acoustic waves in large domains with boundaries. Commun. Math. Phys. 294 (2010), 73–95. | DOI | MR
[4] Feireisl, E.: Local decay of acoustic waves in the low Mach number limits on general unbounded domains under slip boundary conditions. Commun. Partial Differential Equations 36 (2011), 1778–1796. | DOI | MR
[5] Feireisl, E., Karper, T., Kreml, O., Stebel, J.: Stability with respect to domain of the low Mach number limit of compressible viscous fluids. Math. Models Methods Appl. Sci. 23 (13) (2013), 2465–2493. | DOI | MR
[6] Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Birkhäuser, Basel, 2009. | MR
[7] Feireisl, E., Schonbek, M.: On the Oberbeck-Boussinesq approximation on unbounded domains. Nonlinear partial differential equations, Abel Symposial (Holden, H., Karlsen, K.H., eds.), vol. 7, Springer, Berlin, 2012. | MR
[8] Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981), 71–88. | DOI
[9] Klein, R., Botta, N., Schneider, T., Munz, C.D., Roller, S., Meister, A., Hoffmann, L., Sonar, T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39 (2001), 261–343. | DOI | MR
[10] Lighthill, J.: Waves in Fluids. Cambridge University Press, 1978.
[11] Wróblewska-Kamińska, A.: Asymptotic analysis of complete fluid system on varying domain: form compressible to incompressible flow. SIAM J. Math. Anal. 49 (5) (2017), 3299–3334. | DOI | MR
[12] Zeytounian, R.K.: Joseph Boussinesq and his approximation: a contemporary view. C.R. Mecanique 331 (2003), 575–586. | DOI
[13] Zeytounian, R.K.: Theory and Applications of Viscous Fluid Flows. Springer, Berlin, 2004. | MR
Cité par Sources :