Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid
Archivum mathematicum, Tome 59 (2023) no. 2, pp. 231-243
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter $\varepsilon \rightarrow 0$, the Froude number proportional to $\sqrt{\varepsilon}$ and when the fluid occupies large domain with spatial obstacle of rough surface varying when $\varepsilon\rightarrow 0$. The limit velocity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral analysis of the associated wave propagator (Neumann Laplacian) governing the motion of acoustic waves.
DOI :
10.5817/AM2023-2-231
Classification :
35Q30, 35Q35
Keywords: Oberbeck-Boussinesq approximation; singular limit; low Mach number; unbounded domain; compressible Navier-Stokes-Fourier system; weak solutions; no-slip boundary condition
Keywords: Oberbeck-Boussinesq approximation; singular limit; low Mach number; unbounded domain; compressible Navier-Stokes-Fourier system; weak solutions; no-slip boundary condition
@article{10_5817_AM2023_2_231,
author = {Wr\'oblewska-Kami\'nska, Aneta},
title = {Stability with respect to domain of the low {Mach} number limit of compressible heat-conducting viscous fluid},
journal = {Archivum mathematicum},
pages = {231--243},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {2023},
doi = {10.5817/AM2023-2-231},
mrnumber = {4563035},
zbl = {07675593},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-231/}
}
TY - JOUR AU - Wróblewska-Kamińska, Aneta TI - Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid JO - Archivum mathematicum PY - 2023 SP - 231 EP - 243 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-231/ DO - 10.5817/AM2023-2-231 LA - en ID - 10_5817_AM2023_2_231 ER -
%0 Journal Article %A Wróblewska-Kamińska, Aneta %T Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid %J Archivum mathematicum %D 2023 %P 231-243 %V 59 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-231/ %R 10.5817/AM2023-2-231 %G en %F 10_5817_AM2023_2_231
Wróblewska-Kamińska, Aneta. Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 231-243. doi: 10.5817/AM2023-2-231
Cité par Sources :