Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid
Archivum mathematicum, Tome 59 (2023) no. 2, pp. 231-243 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter $\varepsilon \rightarrow 0$, the Froude number proportional to $\sqrt{\varepsilon}$ and when the fluid occupies large domain with spatial obstacle of rough surface varying when $\varepsilon\rightarrow 0$. The limit velocity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral analysis of the associated wave propagator (Neumann Laplacian) governing the motion of acoustic waves.
We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter $\varepsilon \rightarrow 0$, the Froude number proportional to $\sqrt{\varepsilon}$ and when the fluid occupies large domain with spatial obstacle of rough surface varying when $\varepsilon\rightarrow 0$. The limit velocity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral analysis of the associated wave propagator (Neumann Laplacian) governing the motion of acoustic waves.
DOI : 10.5817/AM2023-2-231
Classification : 35Q30, 35Q35
Keywords: Oberbeck-Boussinesq approximation; singular limit; low Mach number; unbounded domain; compressible Navier-Stokes-Fourier system; weak solutions; no-slip boundary condition
@article{10_5817_AM2023_2_231,
     author = {Wr\'oblewska-Kami\'nska, Aneta},
     title = {Stability with respect to domain of the low {Mach} number limit of compressible heat-conducting viscous fluid},
     journal = {Archivum mathematicum},
     pages = {231--243},
     year = {2023},
     volume = {59},
     number = {2},
     doi = {10.5817/AM2023-2-231},
     mrnumber = {4563035},
     zbl = {07675593},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-231/}
}
TY  - JOUR
AU  - Wróblewska-Kamińska, Aneta
TI  - Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid
JO  - Archivum mathematicum
PY  - 2023
SP  - 231
EP  - 243
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-231/
DO  - 10.5817/AM2023-2-231
LA  - en
ID  - 10_5817_AM2023_2_231
ER  - 
%0 Journal Article
%A Wróblewska-Kamińska, Aneta
%T Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid
%J Archivum mathematicum
%D 2023
%P 231-243
%V 59
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-231/
%R 10.5817/AM2023-2-231
%G en
%F 10_5817_AM2023_2_231
Wróblewska-Kamińska, Aneta. Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 231-243. doi: 10.5817/AM2023-2-231

[1] Arrieta, J.M., Krejčiřík, D.: Geometric versus spectral convergence for the Neumann Laplacian under exterior perturbation of the domain. Integral Methods in Sciences and Engineering 1 (2010), 9–19. | MR

[2] Bucur, D., Feireisl, E., Nečasová, Š., Wolf, J.: On the asymptotic limit of the Navier-Stokes system in domains with rough boundaries. J. Differential Equations 244 (2008), 2890–2908. | DOI | MR

[3] Feireisl, E.: Incompressible limits and propagation of acoustic waves in large domains with boundaries. Commun. Math. Phys. 294 (2010), 73–95. | DOI | MR

[4] Feireisl, E.: Local decay of acoustic waves in the low Mach number limits on general unbounded domains under slip boundary conditions. Commun. Partial Differential Equations 36 (2011), 1778–1796. | DOI | MR

[5] Feireisl, E., Karper, T., Kreml, O., Stebel, J.: Stability with respect to domain of the low Mach number limit of compressible viscous fluids. Math. Models Methods Appl. Sci. 23 (13) (2013), 2465–2493. | DOI | MR

[6] Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Birkhäuser, Basel, 2009. | MR

[7] Feireisl, E., Schonbek, M.: On the Oberbeck-Boussinesq approximation on unbounded domains. Nonlinear partial differential equations, Abel Symposial (Holden, H., Karlsen, K.H., eds.), vol. 7, Springer, Berlin, 2012. | MR

[8] Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147 (1981), 71–88. | DOI

[9] Klein, R., Botta, N., Schneider, T., Munz, C.D., Roller, S., Meister, A., Hoffmann, L., Sonar, T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39 (2001), 261–343. | DOI | MR

[10] Lighthill, J.: Waves in Fluids. Cambridge University Press, 1978.

[11] Wróblewska-Kamińska, A.: Asymptotic analysis of complete fluid system on varying domain: form compressible to incompressible flow. SIAM J. Math. Anal. 49 (5) (2017), 3299–3334. | DOI | MR

[12] Zeytounian, R.K.: Joseph Boussinesq and his approximation: a contemporary view. C.R. Mecanique 331 (2003), 575–586. | DOI

[13] Zeytounian, R.K.: Theory and Applications of Viscous Fluid Flows. Springer, Berlin, 2004. | MR

Cité par Sources :