Keywords: degenerate Keller–Segel system; logistic source
@article{10_5817_AM2023_2_223,
author = {Tanaka, Yuya},
title = {Existence of blow-up solutions for a degenerate parabolic-elliptic {Keller{\textendash}Segel} system with logistic source},
journal = {Archivum mathematicum},
pages = {223--230},
year = {2023},
volume = {59},
number = {2},
doi = {10.5817/AM2023-2-223},
mrnumber = {4563034},
zbl = {07675592},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-223/}
}
TY - JOUR AU - Tanaka, Yuya TI - Existence of blow-up solutions for a degenerate parabolic-elliptic Keller–Segel system with logistic source JO - Archivum mathematicum PY - 2023 SP - 223 EP - 230 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-223/ DO - 10.5817/AM2023-2-223 LA - en ID - 10_5817_AM2023_2_223 ER -
%0 Journal Article %A Tanaka, Yuya %T Existence of blow-up solutions for a degenerate parabolic-elliptic Keller–Segel system with logistic source %J Archivum mathematicum %D 2023 %P 223-230 %V 59 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-223/ %R 10.5817/AM2023-2-223 %G en %F 10_5817_AM2023_2_223
Tanaka, Yuya. Existence of blow-up solutions for a degenerate parabolic-elliptic Keller–Segel system with logistic source. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 223-230. doi: 10.5817/AM2023-2-223
[1] Black, T., Fuest, M., Lankeit, J.: Relaxed parameter conditions for chemotactic collapse in logistic-type parabolic-elliptic Keller-Segel systems. Z. Angew. Math. Phys. 72 (96) (2021), 23 pp. | MR
[2] Fuest, M.: Blow-up profiles in quasilinear fully parabolic Keller-Segel systems. Nonlinearity 33 (5) (2020), 2306–2334. | DOI | MR
[3] Fuest, M.: Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening. NoDEA Nonlinear Differential Equations Appl. 28 (16) (2021), 17 pp. | MR
[4] Ishida, S., Yokota, T.: Global existence of weak solutions to quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. J. Differential Equations 252 (2) (2012), 1421–1440. | DOI | MR
[5] Ishida, S., Yokota, T.: Blow-up in finite or infinite time for quasilinear degenerate Keller–Segel systems of parabolic–parabolic type. Discrete Contin. Dyn. Syst. Ser. B 18 (10) (2013), 2569–2596. | MR
[6] Lankeit, J.: Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J. Differential Equations 262 (7) (2017), 4052–4084. | DOI | MR
[7] Tanaka, Y.: Boundedness and finite-time blow-up in a quasilinear parabolic–elliptic chemotaxis system with logistic source and nonlinear production. J. Math. Anal. Appl. 506 (2022), 29 pp., no. 125654. | DOI | MR
[8] Tanaka, Y., Yokota, T.: Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete Contin. Dyn. Syst. Ser. B 28 (1) (2023), 262–286. | DOI | MR
[9] Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384 (2) (2011), 261–272. | DOI | MR
[10] Winkler, M.: Finite-time blow-up in low-dimensional Keller–Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69 (69) (2018), 40 pp. | MR
[11] Winkler, M., Djie, K.C.: Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect. Nonlinear Anal. 72 (2) (2010), 1044–1064. | DOI | MR
Cité par Sources :