Keywords: chemotaxis; Lotka–Volterra; finite-time blow-up
@article{10_5817_AM2023_2_215,
author = {Mizukami, Masaaki and Tanaka, Yuya},
title = {Finite-time blow-up in a two-species chemotaxis-competition model with single production},
journal = {Archivum mathematicum},
pages = {215--222},
year = {2023},
volume = {59},
number = {2},
doi = {10.5817/AM2023-2-215},
mrnumber = {4563033},
zbl = {07675591},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-215/}
}
TY - JOUR AU - Mizukami, Masaaki AU - Tanaka, Yuya TI - Finite-time blow-up in a two-species chemotaxis-competition model with single production JO - Archivum mathematicum PY - 2023 SP - 215 EP - 222 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-215/ DO - 10.5817/AM2023-2-215 LA - en ID - 10_5817_AM2023_2_215 ER -
%0 Journal Article %A Mizukami, Masaaki %A Tanaka, Yuya %T Finite-time blow-up in a two-species chemotaxis-competition model with single production %J Archivum mathematicum %D 2023 %P 215-222 %V 59 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-215/ %R 10.5817/AM2023-2-215 %G en %F 10_5817_AM2023_2_215
Mizukami, Masaaki; Tanaka, Yuya. Finite-time blow-up in a two-species chemotaxis-competition model with single production. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 215-222. doi: 10.5817/AM2023-2-215
[1] Baldelli, L., Filippucci, R.: A priori estimates for elliptic problems via Liouville type theorems. Discrete Contin. Dyn. Syst. Ser. S 13 (7) (2020), 1883–1898. | MR
[2] Black, T., Lankeit, J., Mizukami, M.: On the weakly competitive case in a two-species chemotaxis model. IMA J. Appl. Math. 81 (5) (2016), 860–876. | DOI | MR
[3] Cieślak, T., Winkler, M.: Finite-time blow-up in a quasilinear system of chemotaxis. Nonlinearity 21 (5) (2008), 1057–1076. | DOI | MR
[4] Fuest, M.: Approaching optimality in blow-up results for Keller-Segel systems with logistic-type dampening. NoDEA Nonlinear Differential Equations Appl. 28 (16) (2021), 17 pp. | MR
[5] Mizukami, M.: Boundedness and stabilization in a two-species chemotaxis-competition system of parabolic-parabolic-elliptic type. Math. Methods Appl. Sci. 41 (1) (2018), 234–249. | DOI | MR
[6] Mizukami, M., Tanaka, Y., Yokota, T.: Can chemotactic effects lead to blow-up or not in two-species chemotaxis-competition models?. Z. Angew. Math. Phys. 73 (239) (2022), 25 pp. | MR
[7] Stinner, C., Tello, J.I., Winkler, M.: Competitive exclusion in a two-species chemotaxis model. J. Math. Biol. 68 (7) (2014), 1607–1626. | DOI | MR
[8] Tello, J.I., Winkler, M.: Stabilization in a two-species chemotaxis system with a logistic source. Nonlinearity 25 (5) (2012), 1413–1425. | DOI | MR
[9] Tu, X., Qiu, S.: Finite-time blow-up and global boundedness for chemotaxis system with strong logistic dampening. J. Math. Anal. Appl. 486 (1) (2020), 25 pp. | MR
[10] Winkler, M.: Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation. Z. Angew. Math. Phys. 69 (69) (2018), 40 pp. | MR
Cité par Sources :