Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems
Archivum mathematicum, Tome 59 (2023) no. 2, pp. 201-213
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Bounded weak solutions to a particular class of degenerate parabolic cross-diffusion systems are shown to coincide with the unique strong solution determined by the same initial condition on the maximal existence interval of the latter. The proof relies on an estimate established for a relative entropy associated to the system.
DOI :
10.5817/AM2023-2-201
Classification :
35A02, 35K51, 35K65, 35Q35
Keywords: cross diffusion; weak-strong uniqueness; relative entropy
Keywords: cross diffusion; weak-strong uniqueness; relative entropy
@article{10_5817_AM2023_2_201,
author = {Lauren\c{c}ot, Philippe and Matioc, Bogdan-Vasile},
title = {Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems},
journal = {Archivum mathematicum},
pages = {201--213},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {2023},
doi = {10.5817/AM2023-2-201},
mrnumber = {4563032},
zbl = {07675590},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-201/}
}
TY - JOUR AU - Laurençot, Philippe AU - Matioc, Bogdan-Vasile TI - Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems JO - Archivum mathematicum PY - 2023 SP - 201 EP - 213 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-201/ DO - 10.5817/AM2023-2-201 LA - en ID - 10_5817_AM2023_2_201 ER -
%0 Journal Article %A Laurençot, Philippe %A Matioc, Bogdan-Vasile %T Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems %J Archivum mathematicum %D 2023 %P 201-213 %V 59 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-201/ %R 10.5817/AM2023-2-201 %G en %F 10_5817_AM2023_2_201
Laurençot, Philippe; Matioc, Bogdan-Vasile. Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 201-213. doi: 10.5817/AM2023-2-201
Cité par Sources :