Keywords: cross diffusion; weak-strong uniqueness; relative entropy
@article{10_5817_AM2023_2_201,
author = {Lauren\c{c}ot, Philippe and Matioc, Bogdan-Vasile},
title = {Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems},
journal = {Archivum mathematicum},
pages = {201--213},
year = {2023},
volume = {59},
number = {2},
doi = {10.5817/AM2023-2-201},
mrnumber = {4563032},
zbl = {07675590},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-201/}
}
TY - JOUR AU - Laurençot, Philippe AU - Matioc, Bogdan-Vasile TI - Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems JO - Archivum mathematicum PY - 2023 SP - 201 EP - 213 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-201/ DO - 10.5817/AM2023-2-201 LA - en ID - 10_5817_AM2023_2_201 ER -
%0 Journal Article %A Laurençot, Philippe %A Matioc, Bogdan-Vasile %T Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems %J Archivum mathematicum %D 2023 %P 201-213 %V 59 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-201/ %R 10.5817/AM2023-2-201 %G en %F 10_5817_AM2023_2_201
Laurençot, Philippe; Matioc, Bogdan-Vasile. Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 201-213. doi: 10.5817/AM2023-2-201
[1] Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311–341. | DOI | Zbl
[2] Amann, H.: Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp. 9–126.
[3] Bénilan, Ph., Crandall, M.G., Pierre, M.: Solutions of the porous medium equation in ${\mathbb{R}}^ N$ under optimal conditions on initial values. Indiana Univ. Math. J. 33 (1984), 51–87. | DOI
[4] Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 183, Springer, New York, 2013. | DOI | MR
[5] Brenier, Y., De Lellis, C., Székelyhidi, Jr., L.: Weak-strong uniqueness for measure-valued solutions. Comm. Math. Phys. 305 (2011), no. 2, 351–361. | DOI | MR
[6] Bresch, D., Gisclon, M., Lacroix-Violet, I.: On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models. Arch. Ration. Mech. Anal. 233 (2019), no. 3, 975–1025. | DOI | MR
[7] Brézis, H., Crandall, M.G.: Uniqueness of solutions of the initial-value problem for $u_t- \Delta \varphi (u)=0$. J. Math. Pures Appl. (9) 58 (1979), 153–163.
[8] Chen, X., Jüngel, A.: Weak-strong uniqueness of renormalized solutions to reaction-cross-diffusion systems. Math. Models Methods Appl. Sci. 29 (2019), no. 2, 237–270. | DOI | MR
[9] Christoforou, C., Tzavaras, A.E.: Relative entropy for hyperbolic-parabolic systems and application to the constitutive theory of thermoviscoelasticity. Arch. Ration. Mech. Anal. 229 (2018), no. 1, 1–52. | DOI | MR
[10] Escher, J., Matioc, A.-V., Matioc, B.-V.: Modelling and analysis of the Muskat problem for thin fluid layers. J. Math. Fluid Mech. 14 (2012), 267–277. | DOI | MR
[11] Feireisl, E., Jin, B.J., Novotný, A.: Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 14 (2012), no. 4, 717–730. | DOI | MR
[12] Feireisl, E., Novotný, A.: Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204 (2012), no. 2, 683–706. | DOI | MR
[13] Fischer, J.: Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations. Nonlinear Anal. 159 (2017), 181–207. | MR
[14] Fischer, J., Hensel, S.: Weak-strong uniqueness for the Navier-Stokes equation for two fluids with surface tension. Arch. Ration. Mech. Anal. 236 (2020), no. 2, 967–1087. | DOI | MR
[15] Giesselmann, J., Lattanzio, C., Tzavaras, A.E.: Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics. Arch. Ration. Mech. Anal. 223 (2017), no. 3, 1427–1484. | DOI | MR
[16] Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity 28 (2015), no. 11, 3873–3890. | DOI | MR
[17] Hopf, K.: Weak-strong uniqueness for energy-reaction-diffusion systems. Math. Models Methods Appl. Sci. 32 (2022), 1015–1069. | DOI | MR
[18] Huo, X., Jüngel, A., Tzavaras, A.E.: Weak-strong uniqueness for Maxwell-Stefan systems. SIAM J. Math. Anal. 54 (2022), no. 3, 3215–3252. | DOI | MR
[19] Jüngel, A., Portisch, S., Zurek, A.: Nonlocal cross-diffusion systems for multi-species populations and networks. Nonlinear Anal. 219 (2022), Paper No. 112800, 1–26. | DOI | MR
[20] Laurençot, Ph., Matioc, B.-V.: Bounded weak solutions to a class of degenerate cross-diffusion systems. arXiv: 2201.06479.
[21] Laurençot, Ph., Matioc, B.-V.: The porous medium equation as a singular limit of the thin film Muskat problem. arXiv:2108.09032, to appear in Asymptot. Anal.
[22] Laurençot, Ph., Matioc, B.-V.: Bounded weak solutions to the thin film Muskat problem via an infinite family of Liapunov functionals. Trans. Amer. Math. Soc. 375 (2022), no. 8, 5963–5986. | MR
[23] Matioc, B.-V., Walker, Ch.: On the principle of linearized stability in interpolation spaces for quasilinear evolution equations. Monatsh. Math. 191 (2020), no. 3, 615–634. | DOI | MR
[24] Otto, F.: $L^ 1$-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differential Equations 131 (1996), no. 1, 20–38. | DOI
[25] Pierre, M.: Uniqueness of the solutions of $u_t-\Delta (\phi (u)) = 0$ with initial datum a measure. Nonlinear Anal. 6 (1982), 175–187.
[26] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978. | Zbl
[27] Vázquez, J.L.: The Porous Medium Equation. Clarendon Press, Oxford, 2007. | MR
Cité par Sources :