Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems
Archivum mathematicum, Tome 59 (2023) no. 2, pp. 201-213.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Bounded weak solutions to a particular class of degenerate parabolic cross-diffusion systems are shown to coincide with the unique strong solution determined by the same initial condition on the maximal existence interval of the latter. The proof relies on an estimate established for a relative entropy associated to the system.
DOI : 10.5817/AM2023-2-201
Classification : 35A02, 35K51, 35K65, 35Q35
Keywords: cross diffusion; weak-strong uniqueness; relative entropy
@article{10_5817_AM2023_2_201,
     author = {Lauren\c{c}ot, Philippe and Matioc, Bogdan-Vasile},
     title = {Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems},
     journal = {Archivum mathematicum},
     pages = {201--213},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2023},
     doi = {10.5817/AM2023-2-201},
     mrnumber = {4563032},
     zbl = {07675590},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-201/}
}
TY  - JOUR
AU  - Laurençot, Philippe
AU  - Matioc, Bogdan-Vasile
TI  - Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems
JO  - Archivum mathematicum
PY  - 2023
SP  - 201
EP  - 213
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-201/
DO  - 10.5817/AM2023-2-201
LA  - en
ID  - 10_5817_AM2023_2_201
ER  - 
%0 Journal Article
%A Laurençot, Philippe
%A Matioc, Bogdan-Vasile
%T Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems
%J Archivum mathematicum
%D 2023
%P 201-213
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-201/
%R 10.5817/AM2023-2-201
%G en
%F 10_5817_AM2023_2_201
Laurençot, Philippe; Matioc, Bogdan-Vasile. Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 201-213. doi : 10.5817/AM2023-2-201. http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-201/

Cité par Sources :