Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory
Archivum mathematicum, Tome 59 (2023) no. 2, pp. 191-200 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we establish the existence of the uniform attractor for a semi linear parabolic problem with bounded non autonomous disturbances in the phase space of continuous functions. We applied obtained results to prove the asymptotic gain property with respect to the global attractor of the undisturbed system.
In this paper we establish the existence of the uniform attractor for a semi linear parabolic problem with bounded non autonomous disturbances in the phase space of continuous functions. We applied obtained results to prove the asymptotic gain property with respect to the global attractor of the undisturbed system.
DOI : 10.5817/AM2023-2-191
Classification : 26A12, 34C10
Keywords: parabolic equations; attractor; stability
@article{10_5817_AM2023_2_191,
     author = {Kapustyan, Oleksiy and Kapustian, Olena and Stanzytskyi, Oleksandr and Korol, Ihor},
     title = {Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory},
     journal = {Archivum mathematicum},
     pages = {191--200},
     year = {2023},
     volume = {59},
     number = {2},
     doi = {10.5817/AM2023-2-191},
     mrnumber = {4563031},
     zbl = {07675589},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-191/}
}
TY  - JOUR
AU  - Kapustyan, Oleksiy
AU  - Kapustian, Olena
AU  - Stanzytskyi, Oleksandr
AU  - Korol, Ihor
TI  - Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory
JO  - Archivum mathematicum
PY  - 2023
SP  - 191
EP  - 200
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-191/
DO  - 10.5817/AM2023-2-191
LA  - en
ID  - 10_5817_AM2023_2_191
ER  - 
%0 Journal Article
%A Kapustyan, Oleksiy
%A Kapustian, Olena
%A Stanzytskyi, Oleksandr
%A Korol, Ihor
%T Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory
%J Archivum mathematicum
%D 2023
%P 191-200
%V 59
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-191/
%R 10.5817/AM2023-2-191
%G en
%F 10_5817_AM2023_2_191
Kapustyan, Oleksiy; Kapustian, Olena; Stanzytskyi, Oleksandr; Korol, Ihor. Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 191-200. doi: 10.5817/AM2023-2-191

[1] Asrorov, F., Sobchuk, V., Kurylko, O.: Finding of bounded solutions to linear impulsive systems. East-Europ. J. Enterprise Technol. 6 (4(102)) (2019), 14–20. | DOI

[2] Barabash, O., Dakhno, N., Shevchenko, H., Sobchuk, V.: Unmanned aerial vehicles flight trajectory optimisation on the basis of variational enequality algorithm and projection method. Proceeding 2019 IEEE 5th International Conference “Actual Problems of Unmanned Aerial Vehicles Developments” (APUAVD), National Aviation University, Kyiv, Ukraine, 2019, pp. 136–139.

[3] Chepyzkov, V.V., Vishik, M.I.: Attractors for equations of mathematical physics. vol. 49, AMS Colloquium Publications, 2002. | MR

[4] Dashkovskiy, S., Feketa, P., Kapustyan, O., Romaniuk, I.: Invariance and stability of global attractors for multi-valued impulsive dynamical systems. J. Math. Anal. Appl. 458 (1) (2018), 193–218. | DOI | MR

[5] Dashkovskiy, S., Kapustyan, O., Romaniuk, I.: Global attractors of impulsive parabolic inclusions. Discrete Contin. Dyn. Syst. Ser. B 22 (5) (2017), 1875–1886. | MR

[6] Dashkovskiy, S., Kapustyan, O., Schmid, J.: A local input-to-state stability result w.r.t. attractors of nonlinear reaction-diffusion equations. Math. Control Signals Systems 32 (3) (2020), 309–326. | DOI | MR

[7] Dashkovskiy, S., Mironchenko, A.: Input-to-state stability of infinite-dimensional control systems. Math. Control Signal Systems 25 (2013), 1–35. | DOI | MR

[8] Haraux, A., Kirane, M.: Estimation $C^1$ pour des problemes paraboliques semi-lineaires. Ann. Fac. Sci. Toulouse Math. 5 (1983), 265–280. | DOI

[9] Kapustyan, O.V., Kapustian, O.A., Gorban, N.V., Khomenko, O.V.: Strong global attractor for the three-dimensional Navier-Stokes system of equations in unbounded domain of channel type. J. Automat. Inform. Sci. 47 (11) (2015), 48–59. | DOI

[10] Kapustyan, O.V., Kasyanov, P.O., Valero, J.: Structure of the global attractor for weak solutions of a reaction-diffusion equation. Appl. Math. Inform. Sci. 9 (5) (2015), 2257–2264. | MR

[11] Kichmarenko, O., Stanzhytskyi, O.: Sufficient conditions for the existence of optimal controls for some classes of functional-differential equations. Nonlinear Dyn. Syst. Theory 18 (2) (2018), 196–211. | MR

[12] Manthey, R., Zausinger, T.: Stochastic equations in $L_{\rho }^2$. Stochastic Rep. 66 (1977), 370–373.

[13] Mironchenko, A., Prieur, Ch.: Input-to-state stability of infinite-dimensional systems: recent results and open questions. SIAM Rev. 62 (2020), 529–614. | DOI | MR

[14] Mironchenko, A., Wirtz, F.: Characterization of input-to-state stability for infinite-dimensional systems. IEEE Trans. Automat. Control 63 (6) (2018), 1602–1617. | DOI | MR

[15] Nakonechnyi, A.G., Mashchenko, S.O., Chikrii, V.K: Motion control under conflict condition. J. Automat. Inform. Sci. 50 (1) (2018), 54–75. | DOI | MR

[16] Nakonechnyi, O.G., Kapustian, O.A., Chikrii, A.O.: Approximate guaranteed mean square estimates of functionals on solutions of parabolic problems with fast oscillating coefficients under nonlinear observations. Cybernet. Systems Anal. 55 (5) (2019), 785–795. | DOI | MR

[17] Pazy, A.: Semigroups of linear operators and applications to PDE. Springer-Verlag New York, 1983.

[18] Pichkur, V.V., Sobchuk, V.V.: Mathematical models and control design of a functionally stable technological process. J. Optim. Differ. Equ. Appl. (JODEA) 21 (1) (2021), 1–11.

[19] Robinson, J.: Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors. Cambridge University Press, 2001. | MR

[20] Samoilenko, A.M., Stanzhitskii, A.N.: On the averaging of differential equations on an infinite interval. Differ. Equ. 42 (4) (2006), 505–511. | DOI | MR

[21] Schmid, J., Kapustyan, O., Dashkovskiy, S.: Asymptotic gain results for attractors of semilinear systems. Math. Control Relat. Fields 12 (3) (2022), 763–788. | DOI | MR

[22] Sell, G., You, Y.: Dynamics of evolutionary equations. Springer New York, NY, 2000.

[23] Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (4) (1989), 435–443. | DOI

[24] Sontag, E.D.: Mathematical control theory. Deterministic finite-dimensional systems. Springer, N.Y., 1998.

[25] Stanzhitskii, A.M.: Investigation of invariant sets of Itô stochastic systems with the use of Lyapunov functions. Ukrainian Math. J. 53 (2) (2001), 323–327. | DOI | MR

[26] Stanzhyts’kyi, O.: Investigation of exponential dichotomy of Ito stochastic systems by using quadratic forms. Ukrainian Math. J. 53 (11) (2001), 1882–1894. | DOI

Cité par Sources :