Keywords: parabolic equations; attractor; stability
@article{10_5817_AM2023_2_191,
author = {Kapustyan, Oleksiy and Kapustian, Olena and Stanzytskyi, Oleksandr and Korol, Ihor},
title = {Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory},
journal = {Archivum mathematicum},
pages = {191--200},
year = {2023},
volume = {59},
number = {2},
doi = {10.5817/AM2023-2-191},
mrnumber = {4563031},
zbl = {07675589},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-191/}
}
TY - JOUR AU - Kapustyan, Oleksiy AU - Kapustian, Olena AU - Stanzytskyi, Oleksandr AU - Korol, Ihor TI - Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory JO - Archivum mathematicum PY - 2023 SP - 191 EP - 200 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-191/ DO - 10.5817/AM2023-2-191 LA - en ID - 10_5817_AM2023_2_191 ER -
%0 Journal Article %A Kapustyan, Oleksiy %A Kapustian, Olena %A Stanzytskyi, Oleksandr %A Korol, Ihor %T Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory %J Archivum mathematicum %D 2023 %P 191-200 %V 59 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-191/ %R 10.5817/AM2023-2-191 %G en %F 10_5817_AM2023_2_191
Kapustyan, Oleksiy; Kapustian, Olena; Stanzytskyi, Oleksandr; Korol, Ihor. Uniform attractors in sup-norm for semi linear parabolic problem and application to the robust stability theory. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 191-200. doi: 10.5817/AM2023-2-191
[1] Asrorov, F., Sobchuk, V., Kurylko, O.: Finding of bounded solutions to linear impulsive systems. East-Europ. J. Enterprise Technol. 6 (4(102)) (2019), 14–20. | DOI
[2] Barabash, O., Dakhno, N., Shevchenko, H., Sobchuk, V.: Unmanned aerial vehicles flight trajectory optimisation on the basis of variational enequality algorithm and projection method. Proceeding 2019 IEEE 5th International Conference “Actual Problems of Unmanned Aerial Vehicles Developments” (APUAVD), National Aviation University, Kyiv, Ukraine, 2019, pp. 136–139.
[3] Chepyzkov, V.V., Vishik, M.I.: Attractors for equations of mathematical physics. vol. 49, AMS Colloquium Publications, 2002. | MR
[4] Dashkovskiy, S., Feketa, P., Kapustyan, O., Romaniuk, I.: Invariance and stability of global attractors for multi-valued impulsive dynamical systems. J. Math. Anal. Appl. 458 (1) (2018), 193–218. | DOI | MR
[5] Dashkovskiy, S., Kapustyan, O., Romaniuk, I.: Global attractors of impulsive parabolic inclusions. Discrete Contin. Dyn. Syst. Ser. B 22 (5) (2017), 1875–1886. | MR
[6] Dashkovskiy, S., Kapustyan, O., Schmid, J.: A local input-to-state stability result w.r.t. attractors of nonlinear reaction-diffusion equations. Math. Control Signals Systems 32 (3) (2020), 309–326. | DOI | MR
[7] Dashkovskiy, S., Mironchenko, A.: Input-to-state stability of infinite-dimensional control systems. Math. Control Signal Systems 25 (2013), 1–35. | DOI | MR
[8] Haraux, A., Kirane, M.: Estimation $C^1$ pour des problemes paraboliques semi-lineaires. Ann. Fac. Sci. Toulouse Math. 5 (1983), 265–280. | DOI
[9] Kapustyan, O.V., Kapustian, O.A., Gorban, N.V., Khomenko, O.V.: Strong global attractor for the three-dimensional Navier-Stokes system of equations in unbounded domain of channel type. J. Automat. Inform. Sci. 47 (11) (2015), 48–59. | DOI
[10] Kapustyan, O.V., Kasyanov, P.O., Valero, J.: Structure of the global attractor for weak solutions of a reaction-diffusion equation. Appl. Math. Inform. Sci. 9 (5) (2015), 2257–2264. | MR
[11] Kichmarenko, O., Stanzhytskyi, O.: Sufficient conditions for the existence of optimal controls for some classes of functional-differential equations. Nonlinear Dyn. Syst. Theory 18 (2) (2018), 196–211. | MR
[12] Manthey, R., Zausinger, T.: Stochastic equations in $L_{\rho }^2$. Stochastic Rep. 66 (1977), 370–373.
[13] Mironchenko, A., Prieur, Ch.: Input-to-state stability of infinite-dimensional systems: recent results and open questions. SIAM Rev. 62 (2020), 529–614. | DOI | MR
[14] Mironchenko, A., Wirtz, F.: Characterization of input-to-state stability for infinite-dimensional systems. IEEE Trans. Automat. Control 63 (6) (2018), 1602–1617. | DOI | MR
[15] Nakonechnyi, A.G., Mashchenko, S.O., Chikrii, V.K: Motion control under conflict condition. J. Automat. Inform. Sci. 50 (1) (2018), 54–75. | DOI | MR
[16] Nakonechnyi, O.G., Kapustian, O.A., Chikrii, A.O.: Approximate guaranteed mean square estimates of functionals on solutions of parabolic problems with fast oscillating coefficients under nonlinear observations. Cybernet. Systems Anal. 55 (5) (2019), 785–795. | DOI | MR
[17] Pazy, A.: Semigroups of linear operators and applications to PDE. Springer-Verlag New York, 1983.
[18] Pichkur, V.V., Sobchuk, V.V.: Mathematical models and control design of a functionally stable technological process. J. Optim. Differ. Equ. Appl. (JODEA) 21 (1) (2021), 1–11.
[19] Robinson, J.: Infinite-dimensional dynamical systems. An introduction to dissipative parabolic PDEs and the theory of global attractors. Cambridge University Press, 2001. | MR
[20] Samoilenko, A.M., Stanzhitskii, A.N.: On the averaging of differential equations on an infinite interval. Differ. Equ. 42 (4) (2006), 505–511. | DOI | MR
[21] Schmid, J., Kapustyan, O., Dashkovskiy, S.: Asymptotic gain results for attractors of semilinear systems. Math. Control Relat. Fields 12 (3) (2022), 763–788. | DOI | MR
[22] Sell, G., You, Y.: Dynamics of evolutionary equations. Springer New York, NY, 2000.
[23] Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (4) (1989), 435–443. | DOI
[24] Sontag, E.D.: Mathematical control theory. Deterministic finite-dimensional systems. Springer, N.Y., 1998.
[25] Stanzhitskii, A.M.: Investigation of invariant sets of Itô stochastic systems with the use of Lyapunov functions. Ukrainian Math. J. 53 (2) (2001), 323–327. | DOI | MR
[26] Stanzhyts’kyi, O.: Investigation of exponential dichotomy of Ito stochastic systems by using quadratic forms. Ukrainian Math. J. 53 (11) (2001), 1882–1894. | DOI
Cité par Sources :