Keywords: stabilization; degenerate diffusion; Keller-Segel systems
@article{10_5817_AM2023_2_181,
author = {Ishida, Sachiko and Yokota, Tomomi},
title = {Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems},
journal = {Archivum mathematicum},
pages = {181--189},
year = {2023},
volume = {59},
number = {2},
doi = {10.5817/AM2023-2-181},
mrnumber = {4563030},
zbl = {07675588},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-181/}
}
TY - JOUR AU - Ishida, Sachiko AU - Yokota, Tomomi TI - Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems JO - Archivum mathematicum PY - 2023 SP - 181 EP - 189 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-181/ DO - 10.5817/AM2023-2-181 LA - en ID - 10_5817_AM2023_2_181 ER -
%0 Journal Article %A Ishida, Sachiko %A Yokota, Tomomi %T Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems %J Archivum mathematicum %D 2023 %P 181-189 %V 59 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-181/ %R 10.5817/AM2023-2-181 %G en %F 10_5817_AM2023_2_181
Ishida, Sachiko; Yokota, Tomomi. Stabilization in degenerate parabolic equations in divergence form and application to chemotaxis systems. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 181-189. doi: 10.5817/AM2023-2-181
[1] Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. 35 (2015), 1891–1904. | DOI | MR
[2] Cieślak, T., Stinner, C.: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Appl. Math. 129 (2014), 135–146. | DOI | MR | Zbl
[3] Cieślaka, T., Winkler, M.: Stabilization in a higher-dimensional quasilinear Keller-Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal. 159 (2017), 129–144. | MR
[4] Hashira, T., Ishida, S., Yokota, T.: Finite-time blow-up for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. J. Differential Equations 264 (2018), 6459–6485. | DOI | MR
[5] Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differential Equations 256 (2014), 2993–3010. | DOI | MR
[6] Ishida, S., Yokota, T.: Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 212–232. | MR
[7] Ishida, S., Yokota, T.: Weak stabilization in degenerate parabolic equations in divergence form: application to degenerate Keller-Segel systems. Calc. Var. Partial Differential Equations 61 (2022), Paper No. 105. | DOI | MR
[8] Jiang, J.: Convergence to equilibria of global solutions to a degenerate quasilinear Keller-Segel system. Z. Angew. Math. Phys. 69 (2018), Paper No. 130. | DOI | MR
[9] Langlais, M., Phillips, D.: Stabilization of solutions of nonlinear and degenerate evolution equations. Nonlinear Anal. 9 (1985), 321–333. | DOI
[10] Lankeit, J.: Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete Contin. Dyn. Syst. Ser. S 13 (2020), 233–255. | MR
[11] Laurençot, P., Mizoguchi, N.: Finite time blowup for the parabolic-parabolic Keller-Segel system with critical diffusion. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), 197–220. | DOI | MR
[12] Senba, T., Suzuki, T.: A quasi-linear parabolic system of chemotaxis. Abstr. Appl. Anal. 2006 (2006), 1–21. | DOI | MR
[13] Sugiyama, Y., Kunii, H.: Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term. J. Differential Equations 227 (2006), 333–364. | DOI | MR
[14] Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity. J. Differential Equations 252 (2012), 692–715. | DOI | MR
[15] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differential Equations 248 (2010), 2889–2905. | DOI | MR | Zbl
[16] Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100 (2013), 748–767. | DOI | MR | Zbl
Cité par Sources :