Critical points for reaction-diffusion system with one and two unilateral conditions
Archivum mathematicum, Tome 59 (2023) no. 2, pp. 173-180 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show the location of so called critical points, i.e., couples of diffusion coefficients for which a non-trivial solution of a linear reaction-diffusion system of activator-inhibitor type on an interval with Neumann boundary conditions and with additional non-linear unilateral condition at one or two points on the boundary and/or in the interior exists. Simultaneously, we show the profile of such solutions.
We show the location of so called critical points, i.e., couples of diffusion coefficients for which a non-trivial solution of a linear reaction-diffusion system of activator-inhibitor type on an interval with Neumann boundary conditions and with additional non-linear unilateral condition at one or two points on the boundary and/or in the interior exists. Simultaneously, we show the profile of such solutions.
DOI : 10.5817/AM2023-2-173
Classification : 34B15, 35B36, 92C15
Keywords: reaction-diffusion system; critical points; unilateral conditions
@article{10_5817_AM2023_2_173,
     author = {Eisner, Jan and \v{Z}ilav\'y, Jan},
     title = {Critical points for reaction-diffusion system with one and two unilateral conditions},
     journal = {Archivum mathematicum},
     pages = {173--180},
     year = {2023},
     volume = {59},
     number = {2},
     doi = {10.5817/AM2023-2-173},
     mrnumber = {4563029},
     zbl = {07675587},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-173/}
}
TY  - JOUR
AU  - Eisner, Jan
AU  - Žilavý, Jan
TI  - Critical points for reaction-diffusion system with one and two unilateral conditions
JO  - Archivum mathematicum
PY  - 2023
SP  - 173
EP  - 180
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-173/
DO  - 10.5817/AM2023-2-173
LA  - en
ID  - 10_5817_AM2023_2_173
ER  - 
%0 Journal Article
%A Eisner, Jan
%A Žilavý, Jan
%T Critical points for reaction-diffusion system with one and two unilateral conditions
%J Archivum mathematicum
%D 2023
%P 173-180
%V 59
%N 2
%U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-173/
%R 10.5817/AM2023-2-173
%G en
%F 10_5817_AM2023_2_173
Eisner, Jan; Žilavý, Jan. Critical points for reaction-diffusion system with one and two unilateral conditions. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 173-180. doi: 10.5817/AM2023-2-173

[1] Eisner, J., Kučera, M., Väth, M.: Global bifurcation of a reaction-diffusion system with inclusions. J. Anal. Appl. 28 (4) (2009), 373–409. | MR

[2] Eisner, J., Väth, M.: Degree, instability and bifurcation of reaction-diffusion systems with obstacles near certain hyperbolas. Nonlinear Anal. 135 (2016), 158–193. | MR

[3] Kouba, P.: Existence of nontrivial solutions for reaction-diffusion systems of activator-inhibitor type with dependence on parameter. Master's thesis, Č. Budějovice, Faculty of Science, University of South Bohemia, 2015, (in Czech).

[4] Kučera, M., Väth, M.: Bifurcation for reaction-diffusion systems with unilateral and Neumann boundary conditions. J. Differential Equations 252 (2012), 2951–2982. | DOI | MR

[5] Mimura, M., Nishiura, Y., Yamaguti, M.: Some diffusive prey and predator systems and their bifurcation problems. Ann. N.Y. Acad. Sci. 316 (1979), 490–510. | DOI | Zbl

[6] Pšenicová, M.: Newton boundary value problem for reaction-diffusion system of activator-inhibitor type with parameter. Bachelor thesis, Č. Budějovice (2018), Faculty of Science, University of South Bohemia, 2018, (in Czech).

[7] Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. London Ser. B 237 (641) (1952), 37–72. | DOI

Cité par Sources :