Keywords: reaction-diffusion system; critical points; unilateral conditions
@article{10_5817_AM2023_2_173,
author = {Eisner, Jan and \v{Z}ilav\'y, Jan},
title = {Critical points for reaction-diffusion system with one and two unilateral conditions},
journal = {Archivum mathematicum},
pages = {173--180},
year = {2023},
volume = {59},
number = {2},
doi = {10.5817/AM2023-2-173},
mrnumber = {4563029},
zbl = {07675587},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-173/}
}
TY - JOUR AU - Eisner, Jan AU - Žilavý, Jan TI - Critical points for reaction-diffusion system with one and two unilateral conditions JO - Archivum mathematicum PY - 2023 SP - 173 EP - 180 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-173/ DO - 10.5817/AM2023-2-173 LA - en ID - 10_5817_AM2023_2_173 ER -
%0 Journal Article %A Eisner, Jan %A Žilavý, Jan %T Critical points for reaction-diffusion system with one and two unilateral conditions %J Archivum mathematicum %D 2023 %P 173-180 %V 59 %N 2 %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-173/ %R 10.5817/AM2023-2-173 %G en %F 10_5817_AM2023_2_173
Eisner, Jan; Žilavý, Jan. Critical points for reaction-diffusion system with one and two unilateral conditions. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 173-180. doi: 10.5817/AM2023-2-173
[1] Eisner, J., Kučera, M., Väth, M.: Global bifurcation of a reaction-diffusion system with inclusions. J. Anal. Appl. 28 (4) (2009), 373–409. | MR
[2] Eisner, J., Väth, M.: Degree, instability and bifurcation of reaction-diffusion systems with obstacles near certain hyperbolas. Nonlinear Anal. 135 (2016), 158–193. | MR
[3] Kouba, P.: Existence of nontrivial solutions for reaction-diffusion systems of activator-inhibitor type with dependence on parameter. Master's thesis, Č. Budějovice, Faculty of Science, University of South Bohemia, 2015, (in Czech).
[4] Kučera, M., Väth, M.: Bifurcation for reaction-diffusion systems with unilateral and Neumann boundary conditions. J. Differential Equations 252 (2012), 2951–2982. | DOI | MR
[5] Mimura, M., Nishiura, Y., Yamaguti, M.: Some diffusive prey and predator systems and their bifurcation problems. Ann. N.Y. Acad. Sci. 316 (1979), 490–510. | DOI | Zbl
[6] Pšenicová, M.: Newton boundary value problem for reaction-diffusion system of activator-inhibitor type with parameter. Bachelor thesis, Č. Budějovice (2018), Faculty of Science, University of South Bohemia, 2018, (in Czech).
[7] Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. London Ser. B 237 (641) (1952), 37–72. | DOI
Cité par Sources :