Critical points for reaction-diffusion system with one and two unilateral conditions
Archivum mathematicum, Tome 59 (2023) no. 2, pp. 173-180
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show the location of so called critical points, i.e., couples of diffusion coefficients for which a non-trivial solution of a linear reaction-diffusion system of activator-inhibitor type on an interval with Neumann boundary conditions and with additional non-linear unilateral condition at one or two points on the boundary and/or in the interior exists. Simultaneously, we show the profile of such solutions.
DOI :
10.5817/AM2023-2-173
Classification :
34B15, 35B36, 92C15
Keywords: reaction-diffusion system; critical points; unilateral conditions
Keywords: reaction-diffusion system; critical points; unilateral conditions
@article{10_5817_AM2023_2_173,
author = {Eisner, Jan and \v{Z}ilav\'y, Jan},
title = {Critical points for reaction-diffusion system with one and two unilateral conditions},
journal = {Archivum mathematicum},
pages = {173--180},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {2023},
doi = {10.5817/AM2023-2-173},
mrnumber = {4563029},
zbl = {07675587},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-173/}
}
TY - JOUR AU - Eisner, Jan AU - Žilavý, Jan TI - Critical points for reaction-diffusion system with one and two unilateral conditions JO - Archivum mathematicum PY - 2023 SP - 173 EP - 180 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-173/ DO - 10.5817/AM2023-2-173 LA - en ID - 10_5817_AM2023_2_173 ER -
%0 Journal Article %A Eisner, Jan %A Žilavý, Jan %T Critical points for reaction-diffusion system with one and two unilateral conditions %J Archivum mathematicum %D 2023 %P 173-180 %V 59 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.5817/AM2023-2-173/ %R 10.5817/AM2023-2-173 %G en %F 10_5817_AM2023_2_173
Eisner, Jan; Žilavý, Jan. Critical points for reaction-diffusion system with one and two unilateral conditions. Archivum mathematicum, Tome 59 (2023) no. 2, pp. 173-180. doi: 10.5817/AM2023-2-173
Cité par Sources :